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Systems Engineering, or engineering in general, has long been relying on document-centric

approaches. Switching to Model Based Systems Engineering, or MBSE for short, has exten-

sively been discussed over the past three decades. Since about two decades, MBSE has been

commonly associated with the modelling language SysML (Systems Modeling Language), that

offers a standardized notation, not a methodology of using it. SysML needs therefore to be as-

sociated with a methodology supported by tools. In this paper, a methodology supported by the

free and open-source software TTool is associated with SysML. This paper focuses discussion

on methodological issues, leading the authors to share their experience in real-time systems

modeling. Modeling with SysML is more than just drawing the different diagrams. Associ-

ated tools offer possibilities to analyze SysML models for specific properties. In this paper,

verification addresses both safety and security properties. The TTool model checker inputs

the SysML model enriched with safety properties to be verified and outputs a yes-no answer

for each property. Security verification checks SysML models against confidentiality, integrity

and authenticity properties. As an illustration of the proposed approach, an aircraft cockpit

door control system is modeled in SysML and verified against safety and security properties.
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Nomenclature

�+�)�' = Automated Verification of reAl Time softwARe.

��(! = Clock Constraint Specification Language

�(% = Constraint Satisfaction Programming

�)! = Computation Tree Logic.

�#�$(� = International Council on Systems Engineering

 �$( = Knowledge Acquisition in Automated Specification

"�(� = Model-Based Systems Engineering

$"� = Object Management Group

%'�(" = Probabilistic Symbolic Model Checker

()%� = System Theoretic Process Analysis

(HB"! = Systems Modeling Language

*"! = Unified Modeling Language

I. Introduction
Systems Engineering, or engineering in general, has long been relying on document-centric approaches. Over

the past three decades, researchers [1], industry practitioners [2] and contributors to standardization bodies [3] have

discussed the benefits and potential of switching from document-centric systems engineering to Model-Based Systems

Engineering. The acronym MBSE was coined at that time.

MBSE has been commonly associated with SysML, the Systems Modeling Language standardized [3] by OMG

with the support of INCOSE. With SysML, OMG offers a standardized language, but not the way of using it. In other

words, the SysML standard does not define a methodology, nor does it define associated tools. Consequently, the SysML

language needs to be associated with a methodology that then needs to be supported by mature tools.

Contributions This paper discusses SysML modeling in terms of language, tools, and method.

• Language. SysML, which is a UML profile [4] and therefore a customization of the latter, can be customized in

turn with a twofold objective: enhance its expression power and formalize its semantics. In this paper, the version

of SysML named AVATAR [5] extends and formalizes the OMG-based version of SysML to address real-time

systems.

• Tools. SysML editors are entry points to cater model simulators and formal verification tools that enable

checking of SysML models against design errors. In this paper, the free and open-source software TTool [5]

supports edition and formal verification of AVATAR models. Its native model checker computes properties
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expressed inside the SysML model and returns the feedback in the same SysML model. Users of TTool are

therefore not obliged to use external tools or to inspect the inner workings of the model checker. As far as security

properties are concerned, TTool further enables checking of SysML models against confidentiality, integrity and

authenticity properties.

• Methods. The method associated with AVATAR and TTool has been designed with real-time systems in mind.

The method applies to a broad variety of these systems, including the pilot cabin door controller that serves as

running example throughout this paper.

Structure The rest of this paper is organized as follows. Section II surveys related work. Section III details background

information about SysML/AVATAR modeling, safety property verification relying on model checking, security property

verification, and the method associated with SysML and TTool. Section IV introduces a case study: a Cockpit Door

Control System. Sections V to X discuss application of SysML and formal verification to this control system. Section

XI concludes paper and outlines future work.

II. Related Work

A. Formal Verification of Safety Properties in UML and SysML models

A survey of the literature indicates that checking UML and SysML diagrams against safety properties has been

addressed with respect to activity diagrams [6, 7] and state machine diagrams [8–10], respectively. This section

covers the two families of diagrams although the safety property verification approach discussed later on in this paper

exclusively applies to state machine diagrams.

Formal verification of UML and SysML diagrams commonly relies on translating one UML or SysML model into a

formal model [11]. Translation from UML/SysML to state/transition models has been formalized in the context of Petri

nets [7, 8, 12, 13], automata for NuSMV model checker [14], timed automata [9] for UPPAAL model checker, hybrid

automata [15], model checker NuSMV [16], probabilistic model checker PRISM [6, 15], and a theorem prover [17].

Translation from UML to process algebra has been investigated for RT-LOTOS [10] and CSP [18]. The family of

correct by construction specification has been addressed with B [19].

Whatever the formal model (state/transition model, process algebra, or correct by construction model), the papers

listed by previous paragraph link a UML or a SysML tool with an external verification tool, typically a model checker.

This paper conversely presents a SysML tool (named TTool) that includes a native model checker [20]. Another

important feature of TTool is backtracking of verification results to the initial SysML model. A feature that is missed by

many tools, e.g., [21].
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B. Security models and verification

The closest approaches to our model-driven security verification framework are [22], [23] and [24]. UMLsec [22]

is a modeling framework for defining security properties attached to software components that can be deployed

over execution nodes and networks. It further supports many different stages of system development, ranging from

requirements capture to tests. Logic-based formal verification supports the composition of software components.

In [23], Kordy et al. formally define Attack-Defense Trees. The trees can capture attacks, relations between attacks

and countermeasures that can be related to the system under design. Our approach restricts the attacker’s capabilities

(Dolev-Yao attacker model [25]) but with a formal description of its capabilities. Moreover, we offer the possibility to

model the system in terms of structure and behavior, which makes it possible to formally verify security properties.

More recently, [24] extended UML sequence diagrams for describing security protocols and verifying them. Like

AVATAR designs addressed in this paper, sequence diagrams are translated into ProVerif [26] for verification of

confidentiality and correspondence. While sequence diagrams are particularly well suited to evaluating observational

equivalence properties as they show the messages exchanged between participants, state machine diagrams –as used in

AVATAR– allow modeling of precise behavioral properties more intuitively (such as conditional statements or loops).

Further, our process includes verification of weak and strong authenticity.

C. Methods

The methods one may associate with SysML can be categorized into four groups:

1) Methods compliant with a standard which is a reference for systems engineering. Examples include ANSI

EIA632 [27], IEEE 1220 [28], and IEC 15288 [29].

2) Methods compliant with a standard which is a reference for an application domain, such as ARP 4754A [30] for

aeronautics [31].

3) Methods developed for specific tools whilst remaining applicable to a broad variety of systems. For instance, [1]

and [32] associate a method with SysML and TTool [5] and discuss application to drones and communication

architectures respectively.

4) Methods non initially developed for MBSE can be extended with MBSE features. [33] extends the STPA (Systems

Theoretic Process Analysis) method with SysML and TTool, in particular to benefit from the model formal

verification approaches supported by TTool. Another example of associating a SysML method with another

method is discussed in [34] for the Formose project that associates SysML with KAOS.
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III. Background

A. SysML/AVATAR

OMG (Object Management Group) and INCOSE (International Council on Systems Engineering) have jointly

defined SysML, a System Modelling Language that is now an international standard at OMG [27] and one of the pillars

of Model-Based Systems Engineering (MBSE). The SysML standard at OMG defines a notation, not the way of using

it, leaving doors open for application to various domains, e.g., real-time systems, and to the methods or processes

practitioners of these application domains are familiar with.

Application of SysML to real-time systems has stimulated research work [35] on improving the expression power of

the notation standardized by OMG [3]. For instance, the AVATAR modeling language [1] reuses SysML diagrams

(Table1), but the package diagram. The use case diagram is the keystone of a functional analysis. The high level

functions or services identified by the use cases can be documented verbatim or by other diagrams based on scenarios,

flowcharts or architectural sketches. The design phase makes it possible to make technical choices to develop a system

architecture and endow the blocks of this architecture with an internal behavior expressed in the form of state machines.

AVATAR extends the expression power of several SysML diagrams and introduces one diagram: the modeling

assumptions diagram.

• Block definition diagrams (BDD) and internal block definition diagrams (IBD) are both supported. AVATAR

allows one to merge one BDD and its associated IBD into one view that we call a ‘block diagram’ in the remainder

of this paper. Block diagrams support synchronous and asynchronous communications with different flavors

(lossy, non lossy, etc.).

• Finite state machine diagrams have been extended to cope with temporal indeterminism and work with temporal

intervals instead of fixed delay values, making it possible to model the variability of transmission delays in

computer networks. Further, timers are handled and transition blocks may contain random operators.

• Modeling assumptions diagrams have been introduced into AVATAR to encourage model designers to make

modeling assumptions part of the SysML model and to document them properly. Assumptions identify

simplification made at the time of creating the AVATAR model. For somebody receiving an AVATAR model,

reading assumptions is essential for understanding modeling decisions.

B. Tools

Previous section has identified SysML diagrams, including the customization supported by TTool. One may

distinguish between two groups of diagrams:

• Diagrams edited with TTool. These diagrams are exclusively processed by an editor. No other tool is available

for checking the correctness of these diagrams, which means only interactions with experts may help beginners

assessing the quality of their diagrams. This first group include requirement, modeling assumption, use case,

5



AVATAR Diagram Usage
Requirement Diagram Identifies and structures requirements to be met by the system.
Modeling Assumptions Diagram Identifies the simplifications made by the author of the model.
Parametric Diagram Describes mathematical equations by modeling elements.
Use Case Diagram Sketches the system boundary and its main functions.
Sequence Diagram Documents use cases in the form of a scenario.
Activity Diagram Documents use cases in the form of a flow-chart.
Block Definition Diagram Shows Blocks, their contents, and relationships.
Internal Block Diagram Models the decomposition and interconnections of blocks.
State machine diagram Models the behavior of one block in the architecture.

Table 1 AVATAR diagrams.

sequence, and activity diagrams.

• Diagrams edited with TTool and checked against design errors using the model simulator and formal verification

modules of TTool. With this second group, which includes the block and state machine diagrams, beginners are

provided with tool-assistance to debug the diagrams.

Table 2 categorizes SysML tools depending on the accessibility policy and functions offered by the tools.

Tool Copyrighted by Editor Simulator Safety Verification Security
Source Model Checker Verification

UML/PNO [8] LAAS-CNRS X X X
TimeSquare [21] INRIA X X
Papyrus [36] CEA X
Modelio [37] Modeliosoft X
EA [38] Sparx Systems X X
Cameo [39] Dassault Systems X X
Rhapsody [40] IBM X X X
TTool [5] Telecom Paris X X X X

Table 2 SysML tools.

C. Model Checking for safety verification

Principle. In [41], Fisman and Pnueli define model checking as the method by which a desired behavioral property of

a reactive system is verified over a given system (the model) through exhaustive enumeration (explicit or implicit) of all

the states reachable by the system and the behaviors that traverse through them. Figure 1 pictorially identifies three

main steps. The model checker is catered with a model of the system and a formal expression of the properties to be

verified. The model checker processes the model and the properties, and outputs a "yes/no" answer stating whether the

property is verified or not. The model checker also traces execution paths that lead to property violations. The tool must
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indeed help the designer of the system interpreting verification results in the light of the model of the system the tool

was catered with.

act Model_Checking

[else] []

[The property is satisfied as expected]Counter Example

act Update_Model

Property to be satisfied

SysML model

Fig. 1 Model checking SysML models.

The model checker implemented by TTool The model checker of TTool is catered with a SysML model and a set of

properties.

In terms of model, the requirement diagrams, modeling assumptions diagrams, use case diagrams, sequence diagrams

and activity diagrams are not processed by TTool’s model checker. The later processes the block diagram depicting the

architecture of the system under design and the set of state machines defining the inner workings of the blocks.

In terms of properties, TTool’s model checker takes as input properties expressed using the logic whose operators

are enumerated by Table 3. TTool supports CTL, which is a branching-time logic. CTL properties supported by TTool

either start by A/E followed by "<>" or "[]" followed by a property ?. ? is a boolean expression on block states or

attributes. TTool also supports a "leads-to" property ? → @ with ? and @ being boolean expression on block states and

attributes.

7



Operator Meaning Reachability Graph

A [] p ‘p’ satisfied in all states of all paths

p

p

p

p

p
pp

p

A <> p ‘p’ satisfied in at least one state of all paths

p

p

p

E [] p ‘p’ satisfied in all states of at least one path

p

p

p

E <> p ‘p’ satisfied in at least one state of at least one path

p

p –> q q is eventually satisfied in at least one state of all

paths starting from the states in which p is satisfied

q

p

q

Table 3 CTL logic formula supported by the model checker of TTool.

D. Security

Security aspects have been added to AVATAR in the scope of the SysML-Sec environment [42]. AVATAR has been

enhanced in three ways:

1) System model. A «cryptoblock» defines security methods, such as sencrypt (for symmetric encrypt), sdecrypt
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(for symmetric decrypt), and aencrypt (for asymmetric encrypt). These methods can be used to specify security

mechanisms to setup secure exchanges. AVATAR also allows one to define public/private keys and to specify the

initial knowledge of a block (e.g., specifying the sharing of one symmetric key).

2) Security properties. Examples include the confidentiality of the attribute of a block, the integrity of a message

exchange, the authenticity of a message exchange. These properties are expressed with specific pragmas.

3) Formal verification of security properties [43]. TTool transforms an AVATAR model into a ProVerif specification

and back-traces results to the SysML model. Moreover, when a security property is not satisfied, TTool builds up a

scenario (sequence diagram) representing the property violation.

E. Method

The INCOSE Systems Engineering Handbook [44] states development processes are inherently incremental, iterative,

and recursive in nature. Usually the necessary insights for a system definition is obtained through exchanges between

different development processes, in order to obtain a system definition matching the mission or business needs. Feedback

loops in the development processes enable communication that accounts for ongoing learning and decisions, herewith

facilitating incremental learning from analysis results with evolving technical solutions. Figure 2 depicts the incremental

method associated with SysML and TTool. The method can be sketched as follows:

1) Requirement capture uses requirement diagrams to define stakeholder, user, and system requirements. Modeling

assumptions diagrams list simplifications and other assumptions made at the time of creating the model.

2) Analysis is use case driven. Use cases identify the main functions and services to be offered by the system. Sequence

and activity diagrams document the uses cases in the form of scenarios and flow-charts, respectively.

3) The design step architects the system in the form of a block diagram, and defines the inner workings of the blocks

using state machine diagrams.

4) The last step checks the model against design errors by combining formal verification techniques addressing safety

and security issues. When necessary, for example when one or more of the assumptions need to be updated or in

case of a design error, the method recursively moves back up to the assumption selection or the design step.

IV. Case Study
The case study is inspired by the specification of Airbus cockpit doors [45].

The main concern for a door mechanism for commercial aircraft is safety and security. As frequently asserted, a closed

and locked door is a safe and stable state for the cockpit, the pilots can operate the aircraft safely. The basic state is

therefore that the door of a cockpit is closed and locked. Two ways can be used to enter into the cockpit.

First, a person can use a phone line located outside the cockpit to contact the flight crew inside the cockpit. Depending

on the situation that can be assessed with a camera, the flight crew may decide to keep the door locked or to unlock it

9



act RequirementsEllicitation act AssumptionsExpression

 
 Phase 3 : Design
 

 
 Phase 4 : Checking the model 
 against design errors
 

act Give_Each_Block_One_Behavior

act Simulate_and_Verify_the_Model

 
 Phase 2 : Analysis
 

 
 Phase 1: Requirement Capture
 

act Document_Use_Cases

act Assumptions_Selection

[design error] [else]

[Update Assumptions]

SpecificationOfTheSystemToBeDesigned

RequirementDiagrams ModelingAssumptionsDiagram

UseCaseDiagram

act Identify_Main_funtions_to_be_Offered

SequenceDiagrams ActivityDiagrams

BlockDiagram

act Build_Up_An_architecture_of_Blocks

StateMachineDiagrams

Fig. 2 Incremental modeling.

using a door button. This door button has three positions: norm (no action), lock (door remains locked, thus stopping

any request to enter into the cockpit), unlock. Once released, the button comes back to the norm position automatically.

Second, a person (i.e. a pilot or a crew member) may request the door to unlock using a secret code to be entered

on a keypad located outside the cockpit. When the right code has been entered, a buzzer rings and an open signal is

displayed just next to the door button to invite the pilot to unlock the door. However, one of the pilots can decide to set

the button to lock: in that case, the entry is denied for 5 minutes before a new request can be performed.

Once a valid code has been entered, the cockpit door unlocks after 30s, except if the pilot decided to keep the door lock

by moving the door lock/norm/unlock button to the lock position.
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The cockpit door is thus controlled with a double-security mechanism. So, entering the code is not sufficient, since

some person, e.g., a steward, may be obliged to give the code to the criminal who unduly tries to enter the cockpit.

Sniffing the network between the keypad and the cockpit equipment can be prevented by either physically isolating the

concern communication elements (e.g., buses) or by using security protocols and mechanisms.

V. Requirement Capture
Figure 3 depicts the requirement diagram derived from the specification given in previous section. Each box in the

diagram contains one requirement together with one identifier and a kind attribute stating whether the requirement is

functional or non-functional. The diagram links requirements with three different relations:

1) is made up of (cross surrounded by a circle). It enables decomposition of complex requirements into

more elementary ones.

2) «refine». It adds precision to another requirement.

3) «deriveReq». It enables deriving a technical requirement from a logical one.

In Figure 3, security requirements concern the confidentiality of code used to trigger an emergency call and the

authenticity of the message sent from the keypad to the door management subsystem. Requirement with ID=10 specifies

that the code shall remain confidential to attackers spying on the communication link between the keypad and the door.

Requirement with ID=11 refers to an attacker replacing the keypad by a fake one, or replaying former messages on the

communication link between the keypad and the door management subsystem.

Figure 4 shows how two blocks (see the architecture in figure 7) satisfy the confidentiality requirements expressed by

the requirement diagram in figure 4.

VI. Modeling Assumptions
Figure 5 depicts the modeling assumptions diagram developed for the case study. The MAD consists of two parts.

As many SysML models encountered in the literature, our SysML model ignores maintenance as well as the set up

and shutdown phases of the system under design (Cockpit Door Control System in our case). The MAD enumerates

additional simplifications made by the designers of the model.

VII. Analysis
In this section, ‘Analysis’ denotes the process of defining what the system has to do, by contrast to ‘Design’ that defines

how the system will fulfill these tasks. Figure 6 depicts the use case diagram for the cockpit door controller. A rectangle

sets the boundary of the system.

Here, what is inside the rectangle addresses the cockpit door controller, while external actors are depicted by stickmen

outside the rectangle. The ovals define use cases that represent main functions or services that need to be offered by the
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<<deriveReqt>>

<<deriveReqt>>

<<refine>>
<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<deriveReqt>>

<<Requirement>>
EmergencyCallAuthenticity

ID=10
Text="The system must ensure that messages sent
 by the keypad controler to the door lock
button controller are authentic."
Kind="Data origin authenticity"

<<Requirement>>
CodeConfidentiality

ID=11
Text="The system shall ensure than an attacker capturing 
data on the link between the keypad and the 
door lock system cannot retrieve the secret code."
Kind="Confidentiality"
Risk="Medium"

<<Requirement>>
GrantingAccess

ID=9
Text="When the right code has been entered, a buzzer
 rings in the cockpit  and an open signal is displayed
 just next to the door button to invite the pilots to unlock
 the door."

<<Requirement>>
CrewMemberDigitingACode

ID=8
Text="The system shall allow crew members
to request door unlock using a keypad."
Kind="Functional"

<<Requirement>>
DenyingAccess

ID=7
Text="The system shall allow the pilots to deny access
by maintaining the cockpit door locked for 5 minutes
before a new request can be performed."
Kind="Functional"

<<Requirement>>
PhoneLine

ID=6
Text="The system shall provide crew members
with a phone line connected to the pilot."
Kind="Functional"

<<Requirement>>
RequestingAccess

ID=5
Text="The system shall enable crew members 
to contact the pilots."
Kind="Functional"

<<Requirement>>
UnlockButton

ID=3
Text="The pilot shall unlock the cockpit using a button."
Kind="Functional"

<<Requirement>>
DoorLockButtonButtonPositions

ID=4
Text="The door lock button shall have a default position 
(norm), an unlock position, and a locked position. 
Once release, the button shall come back
automatically to default position."
Kind="Functional"

<<Requirement>>
PilotUnlockingTheCockpit

ID=2
Text="The system shall allow the pilot to unlock 
the cockpit."

<<Requirement>>
CockpitDoorManagement

ID=1
Text="The system shall manage an access to a cockpit."
Kind="Functional"

Fig. 3 Requirement diagram.

<<satisfy>>

<<satisfy>>

<<Element ref.>>
KeypadController

<<Element ref.>>
DoorLockController

<<SecurityRequirement>>
CodeConfidentiality

ID=11
Text="The system shall ensure than an attacker capturing 
data on the link between the keypad  and the 
door system cannot retrieve the secret code."
Kind="Confidentiality"
Risk="Medium"

Fig. 4 Requirement traceability.

controller. One difficulty in defining use cases is to characterize functions at high level, not elementary actions. Logical

inclusions between functions are modeled by «include» relations between pairs of use cases containing these functions.

As mentioned, what is outside the rectangle represents the environment of the controller. That environment is

characterized by a set of actors that interact with the use cases, as stated by the link relations between actors and use
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<<System Assumption>>
Telephone

Text="The telephone is not modeled."

<<System Assumption>>
Camera

Text="The camera is modeled in the form of a non deterministic choice."

<<System Assumption>>
Persons

Text="We assume that there is at least one person in the cockpit 
when the system starts."

<<System Assumption>>
CockpitDoorCodeConfidentiality

Text="From a security perspective, we assume that persons of the system do not 
exchange the secret code to be used on the keypad to request door opening."

<<System Assumption>>
Entering_in_the_cockpit

Text="It is not possible to enter the cockpit by another way than the door."

<<System Assumption>>
Maintenance

Text="Maintenance is ignored by the model."

<<System Assumption>>
Ignored

<<System Assumption>>
Simplifications

<<System Assumption>>
ShutDown

Text="The shut down of the controller is not modeled."

<<System Assumption>>
SetUp

Text="The set up of the controller is not modeled."

Fig. 5 Modeling assumptions diagram.

cases. One actor may be linked to one or several use cases. Similarly, one use case may be linked to one or several actors.

It is further possible to draw inheritance relations between pairs of actors. For instance, on Figure 6, Passenger,

CabinCrew and Pilot inherit from Person to say that passengers, the cabin crew and the pilot are specific types

of persons. Note that all persons can manage the door lock, more obviously the pilot, but also a passenger if she/he

manages to enter the cockpit.

The use case diagram in Figure 6 depicts a ManageDoorLock function that manages the overall control of the Door

Locking System, including

• HandleAccessRequests. It handles the request coming from a keypad.

• ReleaseLock. It allows the pilots to unlock the door.

• ForceLock. It allows the pilots to keep the door locked, disabling the next request for the next 5 minutes.

• InformCrew. It keeps the crew informed on the current status of the door lock management.

• InformPilots. It keeps the pilots aware of the requests.

The environment is modeled by the following actors:
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<<include>>

<<include>>

<<include>>

<<include>>
<<include>>

CockpitDoorControlSystem

Person

CaptainPassenger

CabinCrew

ManageDoorLock

KeysOfKeypad

ButtonOfDoorLockSystem

DisplayInCockpitLEDsOfKeypad

ForceLock

ReleaseLock

InformCrew

Buzzer

InformPilots

HandleAccessRequests

DoorLock

Fig. 6 Use case ciagram.

• Person - pilot, cabin crew or passenger.

• Door - the door itself.

• Keypad - the keypad the crew can use to request access to the cockpit using a code.

• LockButton - the button that allows the pilots to unlock or to reinforce the doorlock.

• LEDsOffKeyPad - a led indication that is to inform the crew on the status of the door lock and associated access

request.

• Buzzer - a sound signal in the cockpit informing pilots on a request to unlock the door.

• DisplayInCockpit - an information display in the cockpit via which the pilots can obtain information on the access

requests.

Writing good use cases to have a good basis for the design phase is not trivial. In [46] Rizzo-Aquino, de Saqui-Sannes

and Vingerhoeds present UCCheck, a methodological assistant for use case diagrams creators. UCCheck detects

errors such as confusion between high-level functions (appropriate for a use case diagrams) and elementary actions

(appropriate for activity diagrams documenting the use cases).

VIII. Design
The first stage in a system’s life cycle, the concept stage, focuses on the system concept. It involves understanding the

implications of a system mission and core functionality. It addresses the requirements and assesses whether the required

functionality with the required performance can be realised within the existing budget constraints. For this, trade-off

indicators such as Figures of Merit (FoM) are used that allow comparing different architectures. The concept design
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stage is one of the critical phases in systems development. It focuses on the concept: understanding the implications

of a system mission and core functionality, a business case together with requirements, their interconnections and

dependencies specified in e.g., key performance indicators and trade-off indicators.

block
SystemAndItsEnvironment

~ in chin(Message m)
~ out chout(Message m) block

DoorLockSystem

cryptoblock
DoorLockController

- inside = 2 : int;
- outside = 2 : int;
- timeout = 0 : int;
- m : Message;
- sk : Key;
- m1 : Message;

- Message aencrypt(Message msg, Key k)
- Message adecrypt(Message msg, Key k)
- Key pk(Key k)
- Message sign(Message msg, Key k)
- bool verifySign(Message msg1, Message sig, Key k)

cryptoblock
KeypadController

- codeValue : int;
- code : Code;
- m : Message;
- sk : Key;
- m1 : Message;

- Message aencrypt(Message msg, Key k)
- Message adecrypt(Message msg, Key k)
- Key pk(Key k)
- Message sign(Message msg, Key k)
- bool verifySign(Message msg1, Message sig, Key k)
- Message cert(Key k, Message msg)
- bool verifyCert(Message cert, Key k)
- Key getpk(Message cert)
- Message sencrypt(Message msg, Key k)
- Message sdecrypt(Message msg, Key k)
- Key DH(Key pubK, Key privK)

block
OnboardPersons

~ out lock()
~ out unlock()
~ out open()
~ out close()
~ out enterCockpit()
~ out leaveCockit()
~ out typeCode(int codeValue)

block
Captain

- isInCockpit = true : bool;
- knowsEmergencyCode = true : bool;
- code : Code;

block
FirstOfficer

- isInCockpit = true : bool;
- knowsEmergencyCode = true : bool;
- code : Code;

block
Crew

- isInCockpit = false : bool;
- knowsEmergencyCode = true : bool;
- code : Code;

block
Passenger

- isInCockpit = false : bool;
- knowsEmergencyCode = false : bool;
- code : Code;

block
KeypadCodeFailure

- codeValue = 1 : int;

Internal channel
connecting chout
to chin

Fig. 7 Architecture of the door control system.

A logical architecture of the system design and its subsystems (the upper-level architecture) needs to be developed. This

architecture is expected to meet the system requirements: a preliminary design of the product or service to develop [47].

The design step defines the architecture of the system and the behavior of the blocks the architecture is made of. System

architecture is “the embodiment of concept, the allocation of physical/informational function to elements of form, and

the definition of relationship among the elements and with the surrounding context” [48]. Architecting is a creative

process in which the architect searches for innovative solutions to a specific problem.

A. Architectural Design

Figure 7 depicts the architecture of the door control system and the environment with which it interacts in the form of a

block diagram view gathering both an block definition diagram and an internal block diagram. A block is defined by a

set of attributes, methods that check and modify the values of these attributes, input signals, and output signals. For

instance, DoorLockController has three attributes (two integer and one timer) and a list of input signals it can receive.
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To receive or send a signal, a block needs a port connected to another port. In Figure 7, two black squares represent the

ports of OnBoardPersons and DoorLockController. The two ports are connected to make communication feasible.

Since OnboardPersons is considered part of the environment and DoorLockController part of the system, this

interconnection between blocks specifies an interface between the system and its environment.

B. Behavioral Design

Each block of the architecture may contain attributes that are local variables not shared with other blocks, methods to

test or modify the values of the attributes, and input/output signals conveyed by the ports owned by the block. Attributes

may be integer or boolean values, records made up of several fields, and timers driven by set and reset commands.

An architecture of blocks is thus described in terms of interfaces. In a next step for each block an expected internal

behavior needs to be defined. This might be achieved, for example, by describing the inner workings of blocks by pieces

of software. Within SysML/AVATAR a slightly different approach was retained: each block has one and only one

behavior that may be expressed in the form of a state machine (and C code). SysML state machines handle attributes,

methods, signals and timers.

CLOSED_AND_LOCKED

CLOSED_AND_UNLOCKED

unlock()

open()

OPENED

close()

lock()

leaveCockpit()enterCockpit()

LOCKED_EMPTY_COCKPIT

chin(m)

lock()

System is blocked

IN_EMERGENCY_CALL

m = sdecrypt(m, sk)

inside = inside + 1
outside = outside - 1 [ inside > 0]

[ inside > 0]

[ outside > 0]

inside = inside - 1
outside = outside +1

after (1, 1)

timeout = 1

Fig. 8 State machine of the door lock controller.
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Referring to the case study, Figure 8 depicts the state machine diagram of the door controller. The state machine in

Figure 8 works as follows. The door controller starts in a state where the cockpit is both closed and locked. The

controller is waiting for either the following signal: an emergency call or an unlock request. The latter may be accepted

at the condition somebody is inside the cockpit. After entering the CLOSE_AND_UNLOCKED state, the controller may

receive an open acceptation signal leading to a state where the door is open. Depending on the crew members and the

pilots inside or outside the cockpit, the door controller accepts (or not) requests to enter or leave the cockpit.

The state machine in Figure 8 may return to its initial state. This will happen in all situations except when the

transition linking CLOSE_AND_UNLOCKED state to LOCKED_EMPTY_COCKPIT state is fired. That transition is labelled

by an after(1,1) clause, which means the controller should wait for one second before firing the transition. Given

the semantics of time implemented by the simulator of TTool, transition to LOCKED_EMPTY_COCKPIT state may be

fired if and only if no other transition (namely a transition without after clause) may be fired. Therefore, the value

‘1‘ assigned to the ‘min’ and ‘max’ attributes of the ‘after’ clause is arbitrary. Its role is merely to make transition

to LOCKED_EMPTY_COCKPIT fireable if all other transitions are unable to be fired. Exhaustive analysis has shown

that transition to LOCKED_EMPTY_COCKPIT is never fired, which lead us to conclude that when the cockpit is empty,

somebody having the code can surely enter into the cockpit.

IX. Model Checking

A. Model Checking with CTL formulas

TTool includes a native model checker that implements the model checking approach introduced in section III.C. The

editor of TTool enables editing the SysML model and the properties to be verified. The model checker of TTool

processes the model and the properties. It outputs a yes/no answer for each property, and assists the designer of the

model with counter-examples when the properties are not satisfied.

Users of TTool’s native model checker are therefore not obliged to learn using an external model checker. Nor are they

obliged to learn any internal language specific to TTool. As a mater of fact, the properties are expressed inside the

SysML model and the yes/no answers are also reported inside the SysML model (see Figure 9). The properties are first

expressed in so-called ‘safety pragmas’ (in other word a customized SysML comment) that is included in the block

diagram. A second step consists in starting the model checker. The last step consists in coming back to the safety

pragma to observe which property is verified (green V) or not verified (red X), or to open counter-examples.

Each line in a safety pragma expresses one property in the form of a CTL logic formula. Figure 9 lists four properties.

This is how these properties can be phrased in English:

1) Is it possible to have one passenger in the cockpit, the latter’s door being locked? The answer is true.

2) Is it possible for the cockpit to be locked and empty at the same time? The answer is false.
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Safety Pragmas
E<> Passenger.isInCockpit ==true&&DoorLockController.inside==1
E<> DoorLockController.LOCKED_EMPTY_COCKPIT
DoorLockController.CLOSED_AND_LOCKED --> DoorLockController.CLOSED_AND_UNLOCKED
DoorLockController.inside == 0 --> DoorLockController.inside>0
DoorLockController.IN_EMERGENCY_CALL --> DoorLockController.CLOSED_AND_UNLOCKED
DoorLockController.IN_EMERGENCY_CALL --> DoorLockController.CLOSED_AND_UNLOCKED
DoorLockController.IN_EMERGENCY_CALL --> DoorLockController.CLOSED_AND_LOCKED || DoorLockController.CLOSED_AND_UNLOCKED

Safety Pragmas
E<> Passenger.isInCockpit ==true&&DoorLockController.inside==1
E<> DoorLockController.LOCKED_EMPTY_COCKPIT
DoorLockController.CLOSED_AND_LOCKED --> DoorLockController.CLOSED_AND_UNLOCKED
DoorLockController.inside == 0 --> DoorLockController.inside>0
DoorLockController.IN_EMERGENCY_CALL --> DoorLockController.CLOSED_AND_UNLOCKED
DoorLockController.IN_EMERGENCY_CALL --> DoorLockController.CLOSED_AND_UNLOCKED
DoorLockController.IN_EMERGENCY_CALL --> DoorLockController.CLOSED_AND_LOCKED || DoorLockController.CLOSED_AND_UNLOCKED

Model checking

Fig. 9 Properties expressed and checked in the SysML model.

3) From a situation where the door is closed and the lock button is locked, will the system ever reach a situation where

the door remains unlocked and the door button is unlocked? The answer is false.

4) From a state of emergency call, will the system ever reach a situation where the door is closed and the lock button is

unlocked? The answer is negative.

B. Model Checking of reachability and liveness of states

An important aspect to verify is whether a particular state can be reached, allowing for example to check whether

unwanted events can occur. Another aspect concerns liveness of a state, that is whether a particular state is included in

which traces. To perform such model checking in TTool, there is no need to express properties in terms of CTL formulas.

Properties verification boils down to checking whether one or several states in the state machines are reachable or not.

For a given state in a state machine, one may perform either one of the following verification tasks:

• Reachability of state S. Is S reachable in at least one execution trace starting from the initial state of the block

containing the state machine containing S?

• Liveness of state S. Is S present in all execution traces starting from the initial state of the block containing the state

machine containing S ?

Before checking state S against reachability and liveness, one must select S and label it with a ‘RL’ option where R and

L stand for ‘Reachability’ and ‘Liveness’, respectively. After model checking the SysML model, the R and L letters of

the label are colored in green or red to indicate whether the property holds or not.

Figure 10 depicts an excerpt of the state machine associated with the cockpit door controller. The problem is to decide

whether state LOCKED_EMPTY_COCKPIT is reachable or not. The model checker negatively answers, which means the

SysML model makes it impossible to lock a cockpit that is empty.
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CLOSED_AND_LOCKED

LOCKED_EMPTY_COCKPIT
RRLLSystem is blocked

after (1, 1)

Fig. 10 States and actions checked against their reachability.

X. Security Verification
In previous section, model checking has been applied to verify the SysML model of the door controller against safety

properties. This section reuses that SysML model to verify security properties. As usual when one applies two

verification techniques to the same model, the two techniques do not necessarily extract the same data from the model.

Let us illustrate what may be specific to security property verification. Security-exclusive information may include for

example the possibility (or not) for an attacker to use communication links to perform attacks: a public link can thus be

used to perform attacks, whereas a private one can not. A public link is identified with an eye within a triangle. For

instance the internal communication channel chout-to-chin is public, as shown in Figure 7. Concerning the attacker,

we assume a Dolev-Yao attacker model [25]. An attacker can listen to all messages on public links, forge new messages

from the information he or she has learned while spying the link, and inject these messages in public links.

Three kinds of security properties can be expressed and verified with TTool / ProVerif.

1) The Confidentiality of a block attribute.

2) The Integrity of a message. Integrity is called "Weak authenticity" in TTool.

3) The Authenticity of a message.

Our case study specifies two security requirements addressing confidentiality of the secret code, and (weak and strong)

authenticity of the message sent by the keypad to the door management subsystem. Let us consider Figure 11. The

section labelled by Security Property shows how the properties are described in SysML block diagrams with

the objective to be processed by TTool. The confidentiality property concerns the attribute codeValue of Keypad.

Authenticity relates to the message < sent by KeypadController after entering state sendingCode, and received by

DoorLockController just before entering the IN_EMERGENCY state.

Figure 11 also features security-exclusive characteristics. The "InitialSessionKnowledge" pragma expresses that each

time the system is started, a new B: (for symmetric key) attribute value is shared between the KeypadController and

the DoorLockController blocks. Since B: is of type Key, it means that B: is a symmetric key generated at system

boot-up and shared between the two referred blocks.

Last but not least, state machines can also use security-exclusive methods, such as B4=2AH?C ("4BB064,  4H)

for performing a symmetric encryption, B342AH?C ("4BB064,  4H), 04=2AH?C ("4BB064, :4H) for performing an
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Security features
#InitialSessionKnowledge KeypadController.sk DoorLockController.sk
 
Security Property
#Confidentiality KeypadController.codeValue
#Authenticity KeypadController.sendingCode.m DoorLockController.IN_EMERGENCY_CALL.m

Fig. 11 Security properties included into the SysML model.

asymmetric encryption, and so on. These methods are ignored by the safety verification process. Actually, methods are

used either for the security verification process or for executable code generation.

TTool relies on a model-to-proverif transformation∗ for checking security properties[43]. Results from ProVerif are

then backtraced to models, either as a green/red/grey (satisfied, non satisfied, could not be proved) put next to the block

attributes (for confidentiality) or next to security properties for (weak/strong) authenticity. In case a security property is

not satisfied TTool can build a sequence diagram from the output of ProVerif: this sequence diagram shows a trace

proving the security property violation.

Figure 12 shows how verification results are backtraced: the confidentiality property is satisfied, while the weak/strong

authenticity property is not satisfied. Indeed, the symmetric key that is currently used to ensure the confidentiality

cannot protect against e.g., replay attacks. A possible countermeasure would be to use asymmetric cryptography and a

unique identifier per message.

Security features
#InitialSessionKnowledge KeypadController.sk DoorLockController.sk
 
Security Property
#Confidentiality KeypadController.codeValue
#Authenticity KeypadController.sendingCode.m DoorLockController.IN_EMERGENCY_CALL.m

cryptoblock
KeypadController

- codeValue : int;
- code : Code;
- m : Message;
- sk : Key;
- m1 : Message;

- Message aencrypt(Message msg, Key k)
- Message adecrypt(Message msg, Key k)
- Key pk(Key k)
- Message sign(Message msg, Key k)
- bool verifySign(Message msg1, Message sig,...

Fig. 12 Backtracing of security verification to block diagrams.

∗This transformation has been mathematically proved for Confidentiality properties, and a proof has been sketched for authenticity properties [49]
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XI. Conclusions

A. Contributions

The acronym MBSE was coined to denote system engineering approaches that take models as common references

where previous document-centric approaches used to scatter information. Standardization of SysML at OMG has open

promising avenues to give systems engineers a modeling language to share. SysML is a wide spectrum and graphic

modeling language that may be customized to address one family of systems in particular.

AVATAR is an example of SysML customization that targets real-time systems. Modeling with SysML is more than just

drawing the different diagrams, associated tools offer possibilities to analyze SysML models for specific properties.

This paper shows how free and open source toolkit TTool enables formal verification of AVATAR models. Both safety

and security properties can be verified, as shown on the Cockpit Door Control System that serves as running example

throughout this paper.

B. Future Work

OMG is in the process of standardizing SysML v2. The new version of SysML will own both a textual notation and

a graphic one. AVATAR and TTool will thus evolve to take the new textual syntax into account. SysML v2 extends

SysML v1, for instance by adding port delegation to composition. Note: port delegation is already supported by TTool.

We may expect SysML v2 to preserve the fundamentals of SysML v1. Consequently some difficulties encountered in

teaching SysML v1 will remain at the time of teaching SysML v2. For instance, the authors of this paper have frequently

noticed that use case diagrams are often misused by newcomers to SysML. In [46], Rizo Aquino, de Saqui-Sannes and

Vingerhoeds have presented a prototype of methodological assistant that helps models designer to create and improve

use case diagrams. This concept of methodological assistant deserves to be extended to other diagrams. Adding

Artificial Intelligence engines to modeling assistant is a promising avenue to explore.

In terms of method, combination of STPA and SysML has been investigated in [33] to extend STPA with formal

verification of safety properties. Next step will consist in taking security properties into account.
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