
HAL Id: hal-03689243
https://telecom-paris.hal.science/hal-03689243

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Support for Requirements Validation
Assioua Yasmine, Rabéa Ameur-Boulifa, Patricia Guitton-Ouhamou, Renaud

Pacalet

To cite this version:
Assioua Yasmine, Rabéa Ameur-Boulifa, Patricia Guitton-Ouhamou, Renaud Pacalet. Automatic
Support for Requirements Validation. 11th Embedded Real-Time Systems Congress (ERTS’2022),
Jun 2022, Toulouse, France. �hal-03689243�

https://telecom-paris.hal.science/hal-03689243
https://hal.archives-ouvertes.fr


Automatic Support for Requirements Validation
Assioua Yasmine†, Rabéa Ameur-Boulifa∗, Patricia Guitton-Ouhamou†, Renaud Pacalet∗

∗LTCI, Télécom Paris, Institut Polytechnique de Paris, France
firstname.lastname@telecom-paris.fr
†Renault Software Labs, France
firstname.lastname@renault.com

Abstract—The automotive industry is currently going through
rapid changes from a mechanical industry to one driven by
innovation in electronics and embedded software. This significant
change creates also significant challenges to the industry. One
of the most important is the ability to create safe vehicles,
emphasizing the importance of safety by design. This paper
is intended to contribute to current activities working towards
an industry-wide development of reliable and secure systems.
Correct by design methodology, including formal methods, have
the potential to improve dependability of systems in this domain.
And their use at an early stage of the development process
ensures faster time to market. In this paper, we present tool
support for our approach that aims at integrating the formal
analysis and verification of functional requirements from early
stages of the development life cycle, by using model checking
technique. From informal requirement specifications the tool
delivers models. They will be used to produce evidences that the
requirement specifications are realizable, otherwise it can guide
their revision. The approach is illustrated by a case study based
on a specific function of autonomous vehicles.

Keywords—Requirements analysis, Reliable systems, Model-
based design, Systems engineering.

I. INTRODUCTION

Designing complex systems is a difficult task. Conventional
development approaches provide a unified process for system
development, from requirements analysis to implementation
[14]. Such approaches play a major role in software engi-
neering practices. But quality of designed products in terms
of correctness and robustness still remains a hot spot. The
issue of building a practical but accurate methodology for
designing safe and correct systems still remains unsolved.
Such approaches are generally based on late-stage validation
relying on testing to check that the requirements specifications
are correct or to detect possible flaws, which leads to hight-cost
corrective measures or even huge financial losses. According
to [6] and [22] financial losses caused by failures represent
more than 5% of the overall turnover of the companies. On
the other hand, the study published in [12] reports that 64%
of all errors are introduced during requirements specification
and design, and 36% of the errors are introduced during the
implementation phase.

Test coverage techniques which are commonly used to
ensure the quality of developed systems cannot be used at
early stages. In contrast, formal analysis grants much higher
potential to discover flaws during the design phase of a system.
Yet, formal techniques for verification and validation often

require a strong technical background that limits their usage
especially in the industrial context.

In [32] we proposed a model-based approach for early
validation of requirements that relies on formal methods. To
facilitate the design of automotive software from requirements,
we suggest enhancing the system design process with the use
of formal methods, and to offer a tool that system designers
can use to assess through a rigorous and systematic process
that the developed systems is compliant with the predefined
requirements. This paper is an extension of this previous work.
In this one, we have significantly extended and implemented
the proposed method. First, we enrich and improve the require-
ments expression language to address more applications in
the automotive domain. The work resulting from this research
is an approach to analyse adaptable and extensible templates
that can be used to specify requirements in the automotive
domain. Second, we introduce the implementation of the
resulting template in Xtext an eclispe-based tool [7]. Finally,
we significantly extend the empirical study by evaluating our
approach with an additional use-case. We demonstrate the
applicability of our tool on an industrial context through a
realistic use-case: the Automatic Park Assist system.

While this work is conducted in a context of analysis of
the software requirements embedded in vehicles, we believe
that our approach is not related to any specific system. This is
why throughout the paper we use the term generic ”system”
regardless of which system (software or physical components)
it is referred to.

The rest of the paper is organised as follows: section II intro-
duces the overall process for the formalization of requirements
by showing the steps from input data to final output. Section
III gives the structure of the requirements language used to
specify automotive requirements. It resembles EARS require-
ments structure. Section IV provides the technical approach for
the formalization of requirements. This includes the natural-
like languages template for specifying requirements, as well
as the association between templates and their semantics in
the UPPAAL formalism, for the derivation of formal models.
Section V validates our approach. Section VI surveys related
work before concluding in section VII.

II. APPROACH FOR REQUIREMENTS VALIDATION

The approach we advocate for formally analysing and
validating requirements is described in Fig. 1. Our tool, which



Fig. 1: An overview of the end-to-end approach for analysing formally automotive requirements

is a proof of concept, is built on the basis of open-source tools.
It consists of three main parts:

• Step 1: To have a clear understanding of the automotive
requirements, we conducted a deep analysis of textual re-
quirements specifying different use-cases in our company.
This work led to the identification of patterns and the
establishment of their classification. From those patterns
we created a grammar that gathers all the possible forms
that a requirement can take. The classification is built
regarding their structures and their role in the model
construction. As with a programming language, the over-
all structure involves fixed terms (keywords), such as
while and shall, that can be combined with free-form
elements with no predefined scheme. The transformation
of these structures into a formal notations allows to verify
their completeness, consistency, and correctness by using
automatic tools. The transformation task is implemented
using the open-source software framework Xtext used for
developing programming languages and domain-specific
languages.

• Step 2: During this step we translate the requirements
from their textual form to a model. We chose the UP-
PAAL automaton formalism as the modelling language
for its ability to represent all the aspects desired and
targeted by the analysis. In particular, the UPPAAL for-
malism supports various constructors, which gives it great
power of expression. For instance, the use of expres-
sions (for expressing guards and assignments) built over
variables and parameters, and the use of synchronisa-
tion over channels. It also allows to model a global
system by composition of subsystems (processes). The
translation procedure is implemented using the open-
souce Eclipse Xtend framework, also widely used for
developing domain-specific languages.

• Step 3: The outcome of the construction of step 2 is either
a valid model, or a non-valid model. In the former case,
the automaton has an initial state, from the initial state
there is a path to all other states, and the automaton is
deterministic. A valid result provides an early evidence of

requirement’s consistency and correctness, it can then be
used to a posteriori analysis and verification of properties.
In the latter case, the malformations are shown to engi-
neers who will correct or complete the requirements in an
iterative process. To perform the analysis and verification
task, we use the UPPAAL model checker: this tool allows
to check automatically the consistency of the model
against properties that can be expressed using specific
languages (such as CTL language) or observer automata.
In cases where properties are violated, the tool is able to
provide a precise and useful feedback to the developer
(engineer) to understand the source of the violation, and
possibly how to fix it.

III. REQUIREMENTS SPECIFICATION

Many large firms, such as Renault, write technical spec-
ifications for the system under design or for the software
application before getting started. The features and behaviour
of the system or the application are described in a set of
documents. It includes a variety of texts and graphics that
defines the intended functionality required by the customer.
At Renault, this document is called STRComp (from System
Technical Requirement Component). This document includes
textual templates that are requirements written in a constrained
natural language, i.e, natural-like language with restricted
syntax.

The analysis of the STRComp of different case studies stud-
ied during our work allowed us to classify the requirements
into categories according to their role and their nature. Overall,
we have identified three categories:
• Interface requirements specification defines interface for

the system under design, in that it describes how to access
the functionality provided by the system via variables or
signals. This type of requirement gives the names of the
variables and signals, and their domain. For example, the
requirement scheme that is used to specify the signals
sent by the system to the environment (subsystems) is of
the following form:
<system> shall send from <actor> the signal <name>
[with the following values : (- <value>)+ ]



In the same way, requirement schemes are defined spec-
ifying the signals received by the systems:
<system> shall receive from <actor> the signal <name>
[ with the following values : - <value>)+ ]

• Functional requirements or specification points describe
the desired behaviour of the system: what the system is
intended to do and what conditions it must meet. The
requirements of this category are written in a format close
to the Easy Approach to Requirements Syntax (EARS)
notation [24]. The structure of a specification point is
made up of one or more patterns combined in the same
order. A pattern is a compact and structured template;
it consists of attributes and fixed syntax elements (key-
words). In all the syntactical forms given below, the terms
in bold are fixed syntax elements, while those between
rafters are attributes. The generic pattern syntax used in
our study is the following:

1) A state-driven requirement defines the states of the
system and the condition or triggering event that
enables/disables actions:
while <state> and <condition> [when <trigger>]
<system> shall <action>

An action describes the behaviour that the system
should achieve. It is defined by a change of state
or by an occurrence or consecutive occurrences of
signal setting actions. It has the following format:
<action> ::= switch to <state>

| set <name> to <value>
| activate <function>
| release <function> control

specifying a change of state, an update of a variable
to a given value, an activation of a function, or a
release of a control function of an actuator or sensor.
The terms activate and release are introduced for
readability reasons; they are used to raise requests
that refer to an updating of signals, i.e. actions.

2) An event-driven requirement defines how the system
should behave in response to an effect (nominal or
failure) of an action or an external stimulus that
occurs:
when <trigger>, <system> shall switch to <state>

3) An action-driven requirement defines the action that
is invoked when entering a certain state:
when entering <state>, <system> shall (-<action>)+

4) Some requirements define the conditions that enable
a certain event to be issued. These conditions are
complex and timed. A typical example of such
requirements is the following:
<system> shall detect <trigger>,
if <name> = <value> for more than <delay>

It specifies the conditions under which a certain
event is triggered.

where <system> a name of the system, <name> a name
of signal, <state> a name of state, <condition> a

condition that enables/disables actions, <trigger> an
affect of an internal action or an external stimulus, and
<action> a processing step, e.g. operations updating
variables. These basic forms of requirements can be
combined to specify complex requirements. For instance,
the maximal representation of a state-driven requirement
is given in Fig. 2. The identification of each pattern and
its semantics allows to build the global model of the
specified system.

• Constraints are also functional requirements that impose
restrictions on the realisation of the system. They describe
what constraints the realisation must satisfy to prevent
various risky behaviour. They are of two types: those
called plausibility that define rules about execution which
are plausible and which are not, and those called priori-
ties that define the priorities between its subsystems. As
an example of a constraint:
if <system> is in <state> and entrance conditions to
<state> are satisfied, <system> shall switch to <state>

this additional rule specifies the execution to be set aside
and the execution to be imposed instead.

Although it is well-structured, this language, like RELAX
[31] and Stimulus [20] languages, is classified as a natural
language. It does not meet several assessing criteria for
requirements engineering approaches, which are required by
industry standards (as mentioned in ISO/IEC/IEEE 29148-
2011 [19]). Among these criteria we find verifiability, which
assesses whether an approach supports the possibility of
formally verifying the properties of the requirements. This is
inherently not the case for this language, as it is not tied to a
formal semantics.

IV. FROM TEXTUAL DESCRIPTION TO MODEL

The main objective of our approach is to provide early
evidence that a given set of requirement specifications are
realizable. This objective is specifically related to the require-
ments formalisation challenge [26], [29]. The formalisation
task refers to the transformation of requirements into formal
models. In this section, we outline how formal models are
derived from textual requirements.

For this purpose, we specified the requirement specifications
using the state machine model. The main criteria used in
selecting this formalism includes its precise formal seman-
tics, but also its integration with automatic verification tools
such as model-checkers. We have used the UPPAAL model
checker [23] as it has proven to be successful and practical in
various domains. This tool offers an integrated environment
for analysing real-time systems based on networks of timed
automata. It provides an editor, a symbolic simulator and
a verifier, for modelling, enabling examination of dynamic
executions, and verifying (by covering exhaustive dynamic
behaviour).

A. UPPAAL Model

The model-checker UPPAAL is based on the theory of
timed automata. Within this tool, a system is modelled as



�
�

�
�

�� ��while 〈state〉 and 〈condition〉 ,
�� ��when 〈trigger〉 ,

�
�

�
�〈system〉 shall

�� ��switch to 〈state〉�� ��〈action〉

Fig. 2: The generic syntax of state-driven requirements

a network of timed automata that communicate in a syn-
chronous fashion using so-called channels. A timed automaton
is a classical finite-state machine extended with clocks. Each
transition (edge) of such an automaton can be decorated with
three (optional) labels:

s
guard sync−−−−−−−→

update
s′

• guard expressing a condition on the values of the vari-
ables, which must be satisfied for the transition to be
fired.

• sync, to represent synchronisation. Automata can syn-
chronise over channels. The synchronisation mechanism
in UPPAAL is a hand-shaking synchronisation: two pro-
cesses take a transition at the same time on a common
channel e, one will have a transition labelled e! to identify
the sender and the other a transition labelled e? to identify
receivers. UPPAAL offers urgent channels to force a
synchronisation as soon as it is possible. It also supports
the notion of broadcast channels that allow 1-to-many
synchronisations.

• update a set of actions, which are expressions with a side-
effect, i.e, assignment of variables or reset of clock. They
may also be functions calls.

Note that S and S′ are called locations in UPPAAL. A state
of a UPPAAL model is defined by the locations of all automata
being part of the model, the clock values, and the values of the
variables. This other feature of UPPAAL is very useful for the
applicability of our approach in an industrial context. It leads
to a reduction of the state-space representation: automata with
an infinite number of states can be represented by a finite set
of symbolic states.

In addition to the network of automata, UPPAAL model
includes a declaration part, which contains declarations of
clocks, (global and local) variables, synchronisation channels,
and constants manipulated by automata.

B. Model Construction
We provide an automatic and a systematic stepwise ap-

proach for transforming specification requirements into UP-
PAAL models. We first start with a preprocessing phase for
unifying grammatical notations, e.g. unification of the letter
case of attributes, and for defining a basis for modelling. Once
the preprocessing is complete, all the requirements are trans-
lated systematically into automata that can model them. At the
end of the translation we obtain an UPPAAL model, a network
of (timed) automata, representing all the requirements.

a) Declaration part: Given a set of interface require-
ments, we get a set of variables. We translate each signal into
a variable with the same name and definition domain. This
part will be completed by the declaration of the channels as
they are being created.

b) Automata generation: They are incrementally built
by addressing all functional requirements (specification points
and constraints). To do this, the translation procedure relies
on an interpretation function denoted J.K that translates each
textual item to a corresponding UPPAAL item. To build the
global model we provide a systematic stepwise procedure:

1) During the first phase, the main automaton is derived
from the state-driven requirements. To this end, we
have associated each pattern with its semantics in UP-
PAAL formalism that can formally capture it. From each
requirement, elements of the automaton are derived by
transforming all patterns which forms the requirement,
one after the other in the order of their appearance. The
details of the translation of all the patterns are presented
in Table I. Note that in the description, the parts already
generated and which do not change from one step to
another are greyed. In particular, we see each state of
a requirement is translated to a location with the same
name, a condition to a guard, etc. Note that an event
is generated and initiated each time a condition is built,
not only when a trigger event takes place. Indeed, the
requirements specification is based on an eager seman-
tics: transitions are fired as soon as they are enabled.
However, UPPAAL considers all transitions as lazy:
when a transition is enabled, the system can choose to
react immediately or to wait. To cope with this issue, we
declare all generated synchronisation channels as urgent,
to enforce that the transitions will be taken immediately
when the condition is satisfied. Moreover, when the
translation does not generate a synchronisation event,
to ensure the immediate execution of the transitions we
resort to a modelling artefact with the use of the special
event denoted now emitting over a broadcast channel.
At the end of this step, all state-driven requirements are
addressed and an initial automata is then built.

2) During the second phase, the model is complemented by
transitions and states representing the trigger events that
may occur. In particular, we see an event-driven pattern
is translated into a corresponding synchronisation chan-
nel, which completes a previously generated transition.

3) The model is also complemented in a third phase
through the treatment of action-driven requirements. The
side effect expressions related on certain transitions are



completed (using the ] operator) to produce a complete
update (complete actions to be executed when these
transitions are fired). At the end of these three steps,
a complete automata is built.

4) The fourth phase is the pruning phase that deals with
constraint-type requirements. These requirements mod-
ify the structure of the resulting automata, by pruning
the non-valid transitions. Indeed, as this kind of require-
ments explicitly express undesirable situations. Then,
based on them, the model is modified and corrected
to meet their contacts. After all constraints have been
applied, the final automaton is built.

5) During the final phase, other automata of the global
model are generated. They are derived from the last
family of requirements, those that describe when certain
events are issued. These requirements are in a limited
number and they have generic templates. To each tem-
plate we associated a generic model which is instantiated
when a matching requirement is met.

Once the translation procedure is complete, if it is possible
to generate a valid result (model), this constitutes evidence that
the set of requirements is consistent, correct, and feasible. This
initial model may be supplemented, if necessary, by additional
information that will give the engineers reference points for
missing requirements. Only the properties that cannot be
enforced by design need for a posteriori verification.

The different processes of our framework are automatic, ex-
cept the preprocessing phase that is performed in cooperation
with the domain experts in charge of system design.

V. CASE STUDY: AUTOMATIC PARK ASSIST

To illustrate our approach, we use as example a feature
available in almost all self-driving cars. The advanced driver-
assistance systems (ADAS) are a key underlying technology
in emerging autonomous vehicles [28]. They include several
functions for automated driving, among them the Automatic
Park Assist (APA) function that assists the drivers (see Fig.3)
with parking safely and accurately. APA function provides
easy parking by identifying sufficient parking spaces and steer-
ing the vehicle into it. The parking system can be supervised
by the driver, who can override the operation pushing the
accelerator pedal or the brake pedal. It can be fully automatic
by an activation of the driver on the control broad, then
APA function fully takes over control of parking functions,
including steering, braking, shifting, and acceleration, to assist
drivers in parking. To position the vehicle for parking, it
gathers information from different types of sensors, such as
ultrasonic sensors, lidar, camera, evaluate the situation. It sub-
sequently sends control signal to actuators. When these latter
receive control signal, active steering or braking subsystem
execute instructions effectively and efficiently. Information is
exchanged between components by updating the signals shared
between them.

The specification of this function is defined in a STRComp
including 400 textual requirements, but also requirements
in the form of use-cases, tables and graphics. We carefully

Fig. 3: Interactions between APA function and other compo-
nents

studied the STRComp documents. They provide the overall
description of the function, including details about interactions
with other subsystems. Our study reveals that 70% of the
requirements gleaned from the documents are interaction-
specific while the remaining 30% are functional-specific. Their
analysis helped in identifying 41 signals: 16 originate from the
SONAR sensors, 17 from the Around View Monitor (AVM)
system, and 18 move towards various actuators such as the
steering and the braking. We will illustrate our explanation of
the different phases through examples of requirements.

Declaration part: Let us consider the interface require-
ment REQ_01 that defines the incoming signal pgen_APA_Failure

and its possible values vgen_NoFailure and vgen_Failure.

REQ_01: APA system shall process and receive from SONAR
the signal pgen_APA_Failure with the following values:

- vgen_NoFailure
- vgen_Failure

We define signals within UPPAAL tool as variables. For
practical purposes, we encoded all symbolic values of signals
by numerical values (int type). Indeed, UPPAAL does not sup-
port type String. Fig. 4 shows a small portion of the interface
showing the declarations, we see the signal pgen_APA_Failure

can have values 0 or 1 corresponding to vgen_NoFailure or
vgen_Failure respectively.

Fig. 4: Screenshot of a part of the declaration

Automata construction: The analysis of all the functional
requirements reveals that the function consists of six states (po-
sitions) in_maneuver, out_maneuver, safe_state_
1, safe_state_2, safe_state_3 and safe_state_4



TABLE I: Patterns and their associated model excerpts

Requirement patterns their associated semantics

St
at

e-
dr

iv
en

#
1

(a)
�� ��while 〈state〉 and 〈condition〉 guard = JconditionK

〈state〉 guard−−−−→

(b)

�� ��when 〈trigger〉 event = JtriggerK

〈state〉 guard event?−−−−−−−−−→

urgent broadcast chan now

〈state〉 guard now!−−−−−−−−→

(c)
�� ��〈system〉 shall

�� ��switch to 〈state〉

�� ��〈action〉

〈state〉 guard event?−−−−−−−−−→ 〈state〉

update = JactionK

〈state〉 guard event?−−−−−−−−−→
update

E
ve

nt
-d

riv
en

#
2

�� ��when 〈trigger〉, 〈system〉 shall switch to 〈state〉

Let S be the set of all states generated in step #1

event = JtriggerK
For all s ∈ S, s

event?−−−−−→ 〈state〉

A
ct

io
n-

dr
iv

en
#
3

�� ��when entering 〈state〉, 〈system〉 shall 〈action〉+

update′ = Jaction+K

for all transition
guard event?−−−−−−−−−→

update
〈state〉

guard event?−−−−−−−−−−−−→
update]update′

〈state〉

which are modelled in UPPAAL by six locations. These lo-
cations combined with the different signal values give several
thousand of actual states.

To illustrate how the procedure operates let us apply the
translation rules on a small subset of requirements.

1) Let us start with the following requirement:

REQ_02: while APA system is in Safe_State_2 and
pgen_Ramp = vgen_on,
APA system shall switch to Out_Maneuver

that is a state-driven requirement by applying the ap-
propriate rule, the translation generates the following
transition:

Observe the use of the urgent broadcast synchronisation
channel now to enforce the immediate crossing of the
transition when the condition is satisfied.

2) The translation of another requirement of the same type:

REQ_03: while Out_Maneuver, when S34_ECM_timeout,
APA system shall switch to Safe_State_4

generates another transition from the state
Out_Maneuver to Safe_State_4:

3) Then, let us consider the following event-driven require-
ment:

REQ_04: when standstill activation timeout,
APA system shall switch to Safe_State_2

The translation of this requirement completes the model
as follows:

Observe that a transition going from all already gener-
ated states (Out_Maneuver and Safe_State_4) to the
state Safe_State_2 and labelled with a triggered event
is generated.

4) Let us now consider an example of action-driven re-
quirement:



REQ_05: when entering Safe_State_2 APA system shall:
- set pgen_Warning to vgen_Alert
- release powertrain control

its translation allows the completion of the action part
as shown in the following figure:

Observe that two actions are added to the two
transitions entering the state Safe_State_2: –
(pgen_Warning=1) is a direct translation of the first
action; while the action – (pgen_APA_PWTOrder=0)
results from the treatment of another requirement
(which is not detailed here).

5) Once all requirements have been processed and the
elements of the automaton created, the constraint re-
quirements are applied. To show how they operate on
the model, let us consider the following constraint:
REQ_06: if APA system is in Safe_State_4 and entrance

conditions to Safe_State_2 are satisfied,
APA system shall switch to Safe_State_4

The model is then transformed into the following:

Observe that as specified by the constraint the transition
going to state Safe_State_2 is redirected to state
Safe_State_4.

6) Finally, let us consider the following requirement that
allows the triggering of the event S34_ECM_timeout:
REQ_07: APA system shall detect,

if pgen_APA_PWTOrder = vgen_NotRequested
for more than c_ECMReactionTime

the result of its translation is the following timed
automaton which completes the main automaton:

The outcome of the translation of the APA system require-
ments is a collection of 8 automata: one main automaton
which models the behaviour of the function, and additional
automata modelling all the events that cause the evolution

of the behaviour. The main automaton is given in Fig. 5.
Although it appears to be small in size, the number of states
obtained by product with the seven other automata (which
are similar to the automaton corresponding to the requirement
REQ_07) is around 37 thousand states.

Building a valid model offers an early assurance of the
correctness and consistency of requirements. In addition to
provide evidence that the system is realisable, the generated
model from a set of requirements can be used for a posteriori
verification. It may also be used as an aid to deep understand-
ing in early phase requirements engineering. With this in mind,
we used the generated model to check some properties.

First, we started by verifying (using UPPAAL model
checker) usual properties such as the verification of deadlock
freedom which is essential when combining concurrent com-
ponents. This property is expressed in CTL language as:
• A[] NOT DEADLOCK

This property is evaluated to TRUE meaning that the model
is deadlock-free.

Next, we proved a formula that checks the reachability of
all system states. For example, the property:
• E <> APA.IN MANEUVER

expressing that there exists at least one path starting from
initial state along which state IN MANEUVER will be reached.
The property holds for this state and for all others, except for
Safe_State_3 and Safe_State_4. Not surprisingly, indeed
these two states are reachable by firing condition dealing
with signals updated by an external component, typically the
SONAR. However, we did not include this component in our
model, so the update will never be performed and therefore
the condition will never be enabled.

Afterwards, we proved properties related to the system but
not described in the requirements specification. For example,
having the knowledge about the value of certain signals
when the function is in a given state, we check whether this
property is complied with. For instance, we know that the
Flashing Indicator and the Braking signals have to be available
only when the system is In_maneuver state. By using the
corresponding signals in the model this can be expressed by
safety properties as follows:
• A[] APA.OUT OF MANEUVER IMPLY

PGEN APA FLASHINGINDICATORREQUEST IN==0
• A[] APA.OUT OF MANEUVER IMPLY

PGEN APA BRAKEWHEELTORQUEORDER APAPARK==0

Both properties are evaluated to TRUE meaning that the
specification as defined is compliant with expected behaviour,
that is to say that the set of requirements covered describe the
expected behaviour.

Discussion: This pilot study shows the potential of the
proposed approach. Our approach is based on predefined set
of templates, but it can accommodate additional templates
for requirements specification, provided that they are asso-
ciated with automata semantics. However, to be adopted in
an industrial context some issues remain and need to be



addressed. These include the effectiveness of the approach
and the use of the analysis results, that might be addressed in
future work. Generated models can be used to help discussion
and to explore and learn about the engineer’s needs. The
information provided by UPPAAL model checker to the users
for feedback, including animations, simulations, and derived
counter-examples, assists in this regards. However, to apply
remedial measures if needed, it is necessary that the negative
feedback be viewed on textual representation of the system
requirements.

The scalability issues in the context of industrial verification
still need to be resolved. The approach presented in the paper
pursues this objective by attempting to reduce the time and
cost of the verification phase. The environment or context in
which a system will run is often not taken into account. Rea-
soning about these aspects and their integration into the tool is
among the point that requires further work. It is necessary to
model not only the behaviour of the target system but also the
environment interacting with the system. In UPPAAL, contrary
to NuSMV model checker, the system variables cannot change
via external interactions with the environment. So in order to
simulate the system there is a need to model the environment.
The typical approach to model the environment is to build
an automaton which updates the values of all signals used
by the system non-deterministically. Although it allows the
exhaustive control of all possible execution sequences. It tends
to generate a large number of instances of a single model and
consequently leads to state-explosion. There is need to other
approach that enables to filter out uninterested input values
from all possible values.

The applicability of our approach naturally depends on the
size of the generated models and is therefore limited by the
capacity of the model checker used. In this work, we have
used a symbolic model checker precisely to challenge this
limitation. We are aware that there are solutions that can be
used to alleviate the problem of state explosion, such as the
adoption of a compositional analysis approach or the use of
modular model checking algorithms.

VI. RELATED WORKS

Plenty research works for the requirements analysis have
been presented in the scientific literature, most of them focus
on new or improved techniques for evaluating the quality
of requirements. They look for ill-formedness or errors in
requirements, where an error can be inconsistency, incom-
pleteness or ambiguity [8], [27], [30]. There have been very
few tools that support such analysis on real-world applications
and in an industrial setting. The lack in tooling is partly due
to the use of natural language. Indeed, natural language is
the dominant form of expression of requirements in practical
projects in industry. Such approaches face a fundamental
challenge: writing requirements and designing system requires
a high degree of precision and accuracy, but natural language
is inherently imprecise.

Significant efforts, including both research efforts and in-
dustrial products development, have been made to improve

the techniques for analysing the quality of requirements. Some
approaches use partially formalized notations or semi-formal
languages such as Doors [2], Reqtify [1], and SysML [16].
Doors and Reqtify are widely used in industry, they benefit
from mature tools, e.g. [4] and [3] developed by major
companies, IBM Rational and Dassault Systems respectively.
In both cases the focus is not on analysing requirements and
verification methodology, but on managing requirements.

Another approach introduces the notion of Constrained
Natural-Languages (CNL) such as EARS [24], RELAX [31]
and Stimulus [20] languages. These languages with a simpli-
fied syntax and restricted lexical terms help to bridge the gap
between informal and formal representation of requirements,
and improve their translation from informal to formal. Such
research is often accompanied by proofs-of-concepts or pilot
studies that show the potential of the proposed ideas. Some
research, such as the approach described in the paper [17] is
concerned with the translation of requirements into properties
that can be used with finite-state verification tools, while our
approach aims at building state machines for verification of
functional properties. To the best of our knowledge, only
Stimulus is supported by a tool [21], both the language and
the tool have the same name. It enables engineers to generate
test vectors and test objectives automatically, that can be used
to check whether the developed system is compliant with
its specification. Our approach is similar to to the stimulus
approach, in the sense we generate state machines from CNL
templates. An important difference from this approach, we aim
at the transformation of system requirements into a model, that
provides early evidence that the requirement specifications are
realizable, as opposed to the test objectives that the system
should meet.

Formal methods have proven their cost-effectiveness
through their successful use in industrial context and in differ-
ent areas, such as railway [13], aeronautics and aerospace [9].
There exist a number of approaches relying on mathematical
theories of graphs and automata for requirements analysis.
Such approaches use graphical notations, such as infinite au-
tomata, state diagrams and statecharts, to specify requirements.
However, these representations make their use less practical on
real-world applications, in particular in an industrial setting.
Requirements can use other mathematical theories for system
modelling and analysis, for example Event-B [5] which is
equipped with its own methodology based on set theory and
predicate logic for modelling and to formally prove system
correctness. This kind of mathematically rigorous tools, while
they are powerful, are intended to specialists and engineers
with deep understanding of their mathematical foundations
and, also, applicable domains and limits.

In recent years the early validation of requirements and
the use formal methods has become a focus for industrial
research such as as mentioned in [10], [25] and [29]. Such
empirical research needs to be supported by tools that can be
used on real-world applications and in an industrial setting.
In particular, the automotive industry has expressed interest



in using such approach in developing complex automotive
systems.

VII. CONCLUSION

This paper introduced a systematic process for building
models from automotive requirements written in natural lan-
guage with the aim to reduce the effort of testing and detects
fixes late in software development lifecycle. The process is
automated through a tool and existing verification tool.

The first effort led to categorize the entire set of require-
ments of the system under design in order to formalize them.
We provided a proof of concept regarding our approach by
designing models and verifying some properties. We veri-
fied general properties using UPPAAL such as liveness and
reachability. Naturally our next goal is to find some new
type of properties to be verified in order to validate safety
critical aspect and also detect flaws. Another goal can be to
propose a requirement specific language for the expression of
requirement in the automotive domain to match standard such
as AUTOSAR [18]. In [32], we have given some directions as
well limited to a smaller set of requirements. This language is
different from the languages that already exist for the descrip-
tion of automotive standards, as [15] and [11]. In the sense, it
allows the specification of systems at a high abstraction level,
without any prior knowledge about architectural considerations
and how the functions are then allocated to the components
of the physical architecture.

REFERENCES

[1] Dassault system–reqtify. https://www.3ds.com/fr/produits-et-services/
catia/produits/reqtify/.

[2] Ibm–rational doors. http://www-03.ibm.com/software/products/ratidoor.
[3] The reuse company–rat. https://www.reusecompany.com/

rat-authoring-tools.
[4] The reuse company–rqa. https://www.reusecompany.com/

rqa-quality-studio.
[5] Jean-Raymond Abrial. Modeling in Event-B: System and Software

Engineering. Cambridge University Press, USA, 1st edition, 2010.
[6] AFNOR. National Survey: The costs of poor quality in industry.

Technical report, AFNOR, October 2017.
[7] Thomas Baar. Verification Support for a State-Transition-DSL Defined

with Xtext. In Lecture Notes in Computer Science, vol 9609, pages
50–60. Springer, 06 2016.

[8] Daniel M. Berry and Erik Kamsties. Ambiguity in Requirements
Specification, pages 7–44. Springer US, Boston, MA, 2004.

[9] Jean-Louis Boulanger. Industrial Use of Formal Methods: Formal
Verification. ISTE Ltd. Wiley, 2013.

[10] Marco Bozzano, Alessandro Cimatti, Joost-Pieter Katoen, Panagiotis
Katsaros, Konstantinos Mokos, Viet Yen Nguyen, Thomas Noll, Bart
Postma, and Marco Roveri. Spacecraft early design validation using
formal methods. Reliability Engineering & System Safety, 132:20–35,
2014.

[11] Stefan Bunzel. AUTOSAR the Standardized Software Architecture.
Informatik-Spektrum, 34:79–83, 2011.

[12] Robert N Charette. Software engineering environments : concepts and
technology. Intertext Publications, New York, NY, 1986.

[13] X. Chen, Z. Zhong, Z. Jin, M. Zhang, T. Li, X. Chen, and T. Zhou.
Automating consistency verification of safety requirements for railway
interlocking systems. In 2019 IEEE 27th International Requirements
Engineering Conference (RE), pages 308–318, 2019.

[14] B. H. C. Cheng and J. M. Atlee. Research directions in requirements
engineering. In Future of Software Engineering (FOSE ’07), pages 285–
303, 2007.

[15] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn, Yiannis
Papadopoulos, Mark-Oliver Reiser, Anders Sandberg, David Servat,
Ramin Tavakoli Kolagari, Martin Törngren, and Matthias Weber. The
EAST-ADL Architecture Description Language for Automotive Embed-
ded Software, pages 297–307. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[16] Michel dos Santos Soares and Jos L. M. Vrancken. Requirements
specification and modeling through sysml. 2007 IEEE International
Conference on Systems, Man and Cybernetics, pages 1735–1740, 2007.

[17] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns
in Property Specifications for Finite-State Verification. In Barry W.
Boehm, David Garlan, and Jeff Kramer, editors, Proceedings of the
1999 International Conference on Software Engineering, ICSE’ 99, Los
Angeles, CA, USA, May 16-22, 1999, pages 411–420. ACM, 1999.

[18] Simon Fürst and Markus Bechter. AUTOSAR for connected and
autonomous vehicles: The AUTOSAR adaptive platform. In DSN
Workshops, pages 215–217. IEEE Computer Society, 2016.

[19] IEEE. Systems and software engineering – Life cycle processes –
Requirements engineering. ISO/IEC/IEEE 29148:2011(E).

[20] Bertrand Jeannet and Fabien Gaucher. Debugging Real-Time Systems
Requirements: Simulate The “What” Before The “How”. In Embedded
World Conference, Nürnberg, Germany, 2015.

[21] Bertrand Jeannet and Fabien Gaucher. Debugging Embedded Systems
Requirements with STIMULUS: an Automotive Case-Study. In 8th
European Congress on Embedded Real Time Software and Systems
(ERTS 2016), Toulouse,France, 2016.

[22] Herb Krasner. The Cost of Poor Quality Software in the US: A 2018
Report. Technical report, CISQ Consortium for IT Software Quality,
September 2018.

[23] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell.
International Journal on Software Tools for Technology Transfer, 1(1-
2):134–152, December 1997.

[24] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak. Easy Approach
to Requirements Syntax (EARS). In 2009 17th IEEE International
Requirements Engineering Conference, pages 317–322, 2009.

[25] Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats P. E.
Heimdahl. Proving the shalls: Early validation of requirements through
formal methods. International Journal on Software Tools for Technology
Transfer, 8(4):303–319, 2006.

[26] Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats Per Erik
Heimdahl. Early validation of requirements through formal methods.
International Journal on Software Tools for Technology Transfer, 8(4-
5):303–319, 2006.

[27] Paul Rayson, Ieee Computer Society, Ken Cosh, and Ieee Computer
Society. K.: Shallow Knowledge as an Aid to Deep Understanding in
Early Phase Requirements Engineering. IEEE Transactions on Software
Engineering, pages 969–981, 2005.

[28] Y. Song and C. Liao. Analysis and review of state-of-the-art automatic
parking assist system. In 2016 IEEE International Conference on
Vehicular Electronics and Safety (ICVES), pages 1–6, 2016.

[29] Emmanouela Stachtiari, Anastasia Mavridou, Panagiotis Katsaros, Si-
mon Bliudze, and Joseph Sifakis. Early validation of system re-
quirements and design through correctness-by-construction. Journal of
Systems and Software, 145:52–78, 2018.

[30] Kimberly S. Wasson. A Case Study in Systematic Improvement of
Language for Requirements. In Proceedings of the 14th International
Requirements Engineering Conference, pages 6–15. IEEE Computer
Society, 2006.

[31] Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean-
Michel Bruel. RELAX: Incorporating Uncertainty into the Specification
of Self-Adaptive Systems. 2009 17th IEEE International Requirements
Engineering Conference, pages 79–88, 2009.

[32] Assioua Yasmine, Ameur-Boulifa Rabea, and Guitton-Ouhamou Patricia.
Towards Formal Verification of Autonomous Driving Supervisor Func-
tions. In 10th European Congress on Embedded Real Time Software
and Systems (ERTS 2020), Toulouse, France, January 2020.



Fig. 5: Main automata for Automatic Park Assist function


