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Abstract—Research in Cognitive Science suggests that humancold. A hard-coded model has been implemented, which
beings understand and represent knowledge of the world through contains causal links from heater or thermometer malfunctions
causal relationships. In addition to observations, they can rely to the mishandling of the temperature. However both these

on experimenting and counterfactual reasoning — i.e. referring ibiliti di ded i ¢ ¢
to an alternative course of events — to identify causal relations possibiiiies are discarded, as no component seems 1o repor

and explain atypical situations. Different instances of control any problem. In this case, the cause might lie in an unexpected
systems, such as smart homes, would benet from having a relation: as the user recently moved the temperature sensor

similar causal model, as it would help the user understand the closer to a light bulb, and that the days, in the winter, are
logic of the system and better react when needed. However, gjyqrter the light is on, which produces heat, effectively mak-

while data-driven methods achieve high levels of correlation . by the th i Thi fi
detection, they mainly fall short of nding causal relations, Ing any measure by the thermometer wrong. 1hiS con guration

notably being limited to observations only. In this paper, we being particular to this home, no hard-coded prior causal
propose an approach to learn causal models, combining observed knowledge would be able to anticipate it without ad-hoc rules.
data and selected interventions on the environment. We use this  To overcome this common pitfall, many recent smart home
approach to generate Causal Bayesian Networks, which can be gystams integrate Machine Learning components to predict
later used to perform diagnostic and predictive inference. We . ) . L .

use our method on a smart home simulation, a use case Wherethe envwonmer.\ts behaworland make optimized QeC|S|ons[7].
having knowledge of causal relations pave the way towards HOwever, spurious correlations are often found in data, es-
explainable systems. Our algorithm succeeds in generating a pecially in high dimensions[2], leading to misinterpretation
Causal Bayesian Network close to the simulation’s ground truth  and erroneous causal relations. These approaches thus mostly
causal interactions, showing encouraging future prospects for fa) short of providing the user with a comprehensible causal
application in real-life systems. .

Index Terms—Causal Structure Discovery, Smart Home, model of the enwronmem. .
Causal Inference The theory of Causality, mostly brought to the attention
by J. Pearl [16, 14], brings tools to identify and eliminate
spurious correlations in the construction of a causal model,
mostly by formalizing the concept d@fitervention. Our method

Self-Adaptive Systems (SAS) are by nature interacting wiib to augment a standard Machine Learning approach with
a changing environment, be it software or physical[26]. In thiaterventions on selected variables to infer causal relations.
context of interactions, the ability to model the environmenthe result is a Causal Bayesian Network, i.e. a Bayesian
is prime, as it would help to trace back failures, identifyingletwork whose structure is a causal graph of the environment.
con icts between goals or perform an explanatory reasoning.Our approach is generic and can be applied to build causal
[9] has showed that, in typical smart home setups, explainingbdels of various environments. But it can be computationally
decisions to the user reduce the risk of wrong interventionsxpensive to apply it to an environment with a very large
However, identifying causal relations in the environment of getwork. We choose to apply it in the the smart homes case
SAS is a hard task. because it offers many advantages. Firstly, we don't start from

Hard-coding the causal model, i.e. expressing constraigtsratch as we can begin with a hard-coded causal model then
and links upon variables as rules or a static ontology iscrementally improve it. Moreover, making interventions in
possible, but shows limited interest in the case of SAS. Indeedsmart home is easier to do than in some environments (e.g.
since adaptability to a changing environment is a core featwenuclear power plant). Furthermore, the area of in uence of
of SAS, a static model of the environment is not suited tsome variables is limited to their neighborhood, which reduces
this con guration. Operating changes to the model could lthe number of relationships to consider. Finally, for the scaling
considered, but is likely to require many human interventiome can do the construction using a multi-scale approach.
thus contradicting the principles of autonomic computing[6]. The rest of this paper is organized as follows. In section

To illustrate this issue, consider the following situation. Al, we present the theoretical bases of causality and Bayesian
user is experiencing an anomaly in the temperature contgyhphs upon which our approach is build. Then, we review
system of her smart home, as the temperature is unexpectestigne existing approaches to related issues in section Ill. We

I. INTRODUCTION



then detail our method, and propose, in section IV to illustrateand only if C  N¢ andE  fg(C;Ng). That is, if the
it by comparing known causal graphs of an electrical circuitause variableC can be assigned to some specic random
and a smart home with the results of our method in sectigiistribution while E can be computed from a deterministic
V. Finally, we analyze the current limits of our approach anfiinction of C and some random noidég . Note that, in this
see how it can be integrated into broader systems in sectianition, both the causal relatiohe and the effect noisBlg
VI. are independent from the cau€e

For more complex systems, where causal dependencies
between variables may be multiple, we can useaasal
diagram to represent an underlying structural causal model.
A causal diagram (see Fig. 2) is a directed acyclic graph

II. THEORETICAL BACKGROUND

Typical Typical
tevel (Symbel Actity Quston Sxamples [16, 17, 23] that shows the causal relationships between
1 /;(s;it):iational Seeing et cosngx | ponat doss sasog the variables. The nodes of the graph are the vari_ables, and an
& (Bayes Not DTre change my belefin Y7 he presenca o edge (C;E) belongs to the graph if and only € ! E
_ : belongs to the underlying SCM. For example, in the diagram
Siviie Poing e dox? et f set he heater presented in g. 2, the arrow connecting variableleater
®, (Causal Baves Net temperalure change? and Temperature(H !  T) indicates that the temperature
is causally in uenced by the state of the heater. Another point
3 Counterfactual Imagining, e had actod e e mmmemures O ViEW is to considefTemperatureas listening to théHeater
POLd) s ety difrenty? variable to choose its value.
0 Compared to the more general de nition of SCM, causal

diagrams add the condition of being acyclic[14], encompassing
the idea that causality ows in one direction only: @ has

a causal in uence ort, thenE cannot have an in uence on

Many examples from Machine Learning point out that Thjs further prevents a variable to have an in uence onto
algorithms usually lack the understanding of causal relatiopggs.

behind observations and predictions, causing misinterpreta-
tions of correlations[13]. [16] goes further by integrating this

S . . : 2 H H T T
observation into a “ladder of causation”, in which three distinct eat'er( ) emperature (T)
levels are identi ed (g. 1):

Observing corresponds, according to Pearl, to the rst
and more reachable level of cognition: observing the
world and noting correlations, dependence between some
sets of variables. This stage is the ground for many
modern Al approaches based on data analysis.
Acting This advanced stage of cognition requires the
agent to be able to act on some variables of the eB- Do-operator
vironment, observe the consequences and infer causarhe idea of being able to intervene on the environment
relations. The typical question answered at this point i§ test a causal relation between variables is prime in the
"If 1 do this, what will happen next ?” literature of Causality Theory [14, 17] and can be linked to
Counterfactual Thinking At this point, the agent is able 3 general controlled environment experiment. As stipulated in
to conceptualize enough to be able to perform mentg@le ladder of causation, the ability to perform this intervention
intervention operation on an alternative environment, argheration in past observation to observe an alternative course
observe its evolution. According to Pearl, this level of events is de ning of human cognitive ability.
cognitive ability is only reached by humans. The typical The intervention operation has been formalized by Pearl by
question would be : "What if the apple was two times agtroducing thedo-calculu§l4, 16]. Following his notations,
heavy ? Would it have fallen at a different speed?”  do(C = x) means thaC has been forced to take the value
During the twentieth century, from the causal chains dfy an external action. It follows that,@ ! E was part of the
Wright [27] to the integration of causal inference into MaSCM, the causal relatioB = fg (C; Ng) remains unchanged
chine Learning algorithms [17, 18], research in the elds dfly this operation. This operation therefore allows to identify
Causality Theory aimed at formalizing the intuitive conceptsausal relations: iP(E) 6 P(Ejdo(C = x)), there is a causal

Fig. 1: Ladder of causation

Window (W)

Fig. 2: A simple causal diagram.

of cause-consequence relations. connectionC ! E. In this case, we will use the notation
do(C) E.
A. Structural Causal Model While mere observations of the variabldsT andW from

Causal models aim at representing the interactions betwaka example of g. 2 would show correlations betwekhn
cause and consequence without ambiguity. From the de niti@md T, interventions would give more details on the under-
of [17], a Structural Causal Model (SCM) contai@s! E lying SCM. On one handP(Heater j do(T emperature =



20)) = P(Heater) and on the other hand’(T emperature j construction and the interpretation of the nal diagram change.
do(Heater = High)) 6 P(Temperature), re ecting that In the construction phase, we need to examine each variable,
the heater causes the temperature change, not the other sayC, and ask ourselves which other variables it “listens” to
around. before choosing its value. The chain structééd B! C

As originally stipulate, the do-operatiao(C = x) consid- means thaB listens toA only, C listens toB only, andA
ers anexternalintervention, meaning that it forces the variabléistens to no one; that is, it is determined by external forces
C to a given valuex, while making it insensitive to all other that are not part of our model.
variables. On a causal diagram, this is equivalent to removing

all incoming edges to nod€. For instance, if we consider

. . . True 103% Tue HH s340%
the simple causal diagrafiy ! C; ! E, performing the e W s e W s60n
interventiondo(C; = x) will remove the edg&, ! Cj, thus
making bothC; and E independent fronCy, thus revealing Hs Tubercuoss — N

. True 1.88% las Lung Cancer las Bronchitis
the linear structure of the graph. P B s me 1w e E o

C. Bayesian Network

As Causality Theory emerged with causal diagrams, links
can be made wittBayesian Networksvhich are a broadly
used tool for representing and modeling correlated variables
[5]. Numerous methods for training and dynamically building et L.
Bayesian Networks in many different application contexts exist toms W w7 e o0mon
in the literature[1, 5]. :
Formally, a Bayesian Network (see Fig. 3) is a directed gy 3. A simple Bayesian network, known as the Asia
acyclic graph (DAG) where the nodes correspond to random network.[22]
variables. Each node is associated with a set conditional
probabilities P(X; | par(X;)), where X; is the variable
associated with the specic node ammhr(X;) denotes the [1l. RELATED WORK
set of parents of nodx;. Over recent years, different approaches have tried to close
To build a Bayesian network, one therefore needs to:  the gap between “classical” observation-based Machine Learn-
de ne the graph of the model, i.e. the different variablesng and Causal Theory. For instance, Reinforcement Learning,

and which ones are linked together as already noted by Pearl [16] can be seen as a better approach
nd, for each of these variables, the table of probabilitiethan pure correlation observations, since the agent has the
conditioned on its parent variables opportunity to act on its environment and learn from its

The graph is also called the "structure” of the modelgactions[24]. Thus, Reinforcement Learning has proved very
and the probability tables its "parameters”. Structure angbwerful in tasks that were previously considered as requiring
parameters can be provided by experts, or calculated framtelligent thinking, such as games[21].
data, although in general the structure is de ned by experts[12] uses a different approach to learning Bayseian Net-
and the parameters calculated from experimental data. ~ works, trying to identify a minimal equivalence class between

A Bayesian network carries no assumption that the arrddAGs that t with the observation data. The result is then pre-
has any causal meaning. However, Bayesian networks hekhted as a Partially Directed Acyclic Graph (PDAG). While
the key that enables causal diagrams to interface with datsis method offers the advantage of keeping the graph simple
Probabilistic properties of Bayesian networks and the beliahd shows good predictive performance, it still only relies
propagation algorithms that were explain later are in faon mere observations, and as such lack causal information
indispensable for understanding causal inference. that may impact its interpretation. [11] try to discover the

The main differences between Bayesian networks and caudiaéctions of the remaining edges of PDAG by means of
diagrams lie in how they are constructed and the uses to whikperiment (intervention). However, the PDAG is based only
they are put. A Bayesian network is literally nothing moren correlations, so we end up with connections based on
than a compact representation of a huge probability table. Te@relation that are not causal and also missed causal relation.
arrows mean only that the probabilities of child nodes are Some applications consider counterfactual reasoning and
related to the values of parent nodes by a certain formula (tiéegrate it into the learning process of a SCM[10, 25]. In their
conditional probability tables) and that this relation is suf work ow, they consider the agent to learn a causal model of
cient. That is, knowing additional ancestors of the child wilks environment then use this knowledge to perform counter-
not change the formula. Likewise, a missing arrow betweédactual reasoning and improve performance. Results in pro-
any two nodes means that they are independent, once we kniging explanations for an agent's behavior in the controlled
the values of their parents. environment of a strategy game are encouraging[10]. In a

If, however, the same diagram has been constructed asl@ser-to-life situation, [18] found that allowing do-operations
causal diagram, then both the thinking that goes into tle a learning framework could improve performance in a



classi cation task and achieve better-than-humans detection
of medical condition.

Our approach aims at completing these encouraging steps of
mixing Causality Theory and Machine Learning. Our proposed
method is to learn a Causal Graph from observations and
interventions on the environment, then use it as a structure
to build a Bayesian Network.

V. LEARNING CAUSAL BAYESIAN NETWORKS WITH Fig. 4: A room causal diagram
INTERVENTION

ntervention on one vaiabie. has an in uence over other Sl Nolds conditoned on the value of the third variaif
variable E, observed as a change in their distribution. If so-l,—hat IS, chgckmg '.f’ for some valuetgken byB, we WOUI.d
we know from Causality Theory that there is a causal relatig}PServe. via a chi-squared tesj[, a difference betwefdn j
C! E inthe SCM of the system, but an ambiguity remaingo(c_: 0);d0(_B = u) and_P(E J do(C‘:, - 1.) ;O,I,O(B = ).
whether this relation is direct or not. We therefore proposeTh'S, operation can be V|ewe_d as “locking th? valuebf
to incrementally block causal paths of nodes connected to #ife? 9iven valueu, and observe if the causal relation holds. In
node on which we act, effectively narrowing down the possibﬂéJe examples of g. 5¢ and 5d, we infer the causal relations:
relations. do(P) T jdo(L =0) : True

We illustrate our approach in a setup consisting of Boolean do(P) T jdo(H =0) : False
variaples. _For iIIust.ration purpose, we consider the simple causal Learner Algorithm
situation displayed in g. 4: a room whose temperature (hot . . . .
or cold) is in uenced by the state of a heater (on or off). The Our algorithm, presented in alg.1, iterates over the previ-

heater can be triggered by the user's presence in the roo‘?ﬂ?ly Qescribed ele_mentary steps to remove _non_-causal pairs
Similarly, the window can be either open or close, of variables. To this end, we start by considering a fully

connected graph over all the variables in the system (see
A. Testing causal in uence using interventions g. 6). Then, selected causal in uence tests allow to remove
arrows for unrelated variables. These tests are performed by
increasing order of conditioning: this allows to test the costlier
“Does C have an in uence orB?". Our approach to this high-order conditioned in uences on less arrows, as many have

question is to incrementally remove possible causal relatioﬂ[geadyhbeen.dlscarded by.thell rst s.enesfofhtests. .
following different intervention. These interventions are mail]e’l As shown in g. 6, a major limitation of this approach is

by directly acting upon the environment and monitoring pos hat some do-ope_rations are not feasible in realistic setups: in
bly in uenced variables for changes in their probability distri®l’ €xample, this is the case for the temperature variabtes

bution. To test possible change, we use a chi-squafetbst M€ does not arbitrarily set the temperature of a room to some
on the. distributions(E j do(C :’0)) andP(E j do(C = 1). xed value without modifying other variables (e.g. the heater

This test allows to remove non-causal connections between
pairs of variables, using both intervention operation ar-
counterfactual reasoning. The intervention operations can
performed by directly letting our algorithm acting on selecte?
variables in the environment, thanks to the preconditions v }
applied on the setup. For instance, in the example of Fig. | =" R
the distribution of L changes depending on whether the person @do(P) L (b)do(L) P
is detected inside (P=1) the room or not (P=0). Converse";
the distribution ofP is not affected by the value assignec.
to L during the intervention operation. These two operatior:
therefore lead to the conclusion th@®) L is true and
do(L) P is false.

1) Direct Inuence: Testing the direct in uence between
two variablesC and E is answering the following question:

om
om

CEN
om

i (c)do(P) T (dydo(P) TjH =0
2) Conditional In uence: ) ) i ) o .
Did A have in uence on C given B26(A)  C j do(B)): Fig. 5: Different intervention tests. (5a), the probability density
The case of evaluating a conditional causal in uence can B&L changes depending on whether the intervention Beits
summarized with the questiofidid C have an in uence on O(Plue) or 1(orange). In (5b), interventions bndo not affect
E givenB?” As opposed to the previous case, the causal pdfif Probability distribution of . (Sc): intervening orP shows
is indirect and thus requires additional processing. Here, Rechange in the distribution GF. However, conditioning this
process by testing if the causal in uence betwe@rand £ relation withH =0 removes the relation(5d)



correlated, since a causal relationship implies a correlation
between variables. This rst step allows to remove some
connections, but, for the remaining connections, it does not
provide any direction for the relation. Furthermore, one needs
to be cautious about the potential risk of mislabeling correla-
tions as causal relations. As such, remaining ND-arrows should
be considered only as candidate causal relations.

Present relationships Potential output
1 A——>B A'is the cause of B
A o——0 B Exactly one of the following holds: A B
1. Alisthe cause of B
2. Bisthe cause of A undirected connection

3. No connection, there is a spirius
correlation create by unmeasured
confunder

3 Aog—=%8B Ais the cause of B A —— B
4 Ag-=oo=%B Alis not the cause of B. A «——B
Exactly one of the following holds:
1. B might be th: fA FI d ti
(d) (e) o 2. N;n::?)nneitio:,iah:i:gaspirius 2g9ed connection
. . . . AOo—B correlation create by unmeasured
Fig. 6: Principle of our algorithm. (6a) ground truth cause confunder yunmess
1 itiali i - IS A———o8B The confounder is known, so we can
model of the environment. (§b) Initialization to a fully / BT S ol g \ /,
connected graph over the variables. Non-doable arrows ¢ \ by C.

nodes are shown in blue. (6¢) Causality tests with interventio..c
remove the red arrows. (6d) Arrows are removed, either IByg. 7: The different possible con gurations for processing the
independence test (in yellow) or causality test (in red). (6egmaining ND-arrows. ND-arrows are shown in green, regular
The nal graph is obtained by removing cycles, prioritizingones in blue.

non-doable arrows.

To handle the rest of the process, we rely on the fact that the
usal diagram is, by de nition, a DAG. This condition leads
0 the removal of some arrows among the remaining candi-
dates. Depending on the con guration, different possibilities
e considered, as g. 7 shows:

stateH ). We therefore call the corresponding temperature nodg
a non-doable nodeand consider all of the outgoing relations®
as “non-doable arrows”, or ND-arrows, in the graph. These
arrows are not directly removable since the corresponding ot

operations cannot be performed. case 1 As no ambiguity exists, the arrow is kept in the

graph.

Algorithm 1 Extendeddo Causal Learning Algorithm case 2 In this case, no information can be gathered
1. Initialization - through correlation study alpne. If_no direction crgates a
2. Gis the fully connected graph over nodesf cycle in the graph, the algorithm will keep the undirected
3 k O relation, and tag it as potentially spurious. Further data
4: while There are nodes with more th&nneighbors inG do may lead to eliminating both of the arrows.

51 for each such nodi », each of its neighborX s do case 3 Here, one direction of the relation has been tested
6: for each subse$ of k neighbors ofX s do . .

7. # In uence test for doable node through a (_10-operat|on, while thg other has not. The
s if XA is doablethen algorithm will therefore keep the direction that has been
9: Computedo(Xa)  Xgjdo(S) tested with an intervention.

10: RemoveA ! B from Gif need be case 4 While this ND-arrow can be a spurious corre-

E; eTSg]dependence test for non-doable node lation, the algorithm will keep it if it does not create a

13 ComputeCorr (X a: X s jS) cycle in the resglting graph. It_ will however be agged

14: RemoveXa ! Xg if variables are independent as such. Otherwise, the arrow is removed from the graph.

15: end if More generally, if keeping several ND-arrows would lead

16: end for to a cycle, the algorithm will remove the least signi cant

17: end for

18 Kk k+1 one with respect to Chi-square score.

case 5 In this case we see an ND-arrow that can be pre-

19: end while h i i
20: Postproces§ to turn it into a DAG by removing least signi cant served if there is a confounder that creates a correlation
arrows. between A and B. Here we see that C is a confounder.

So we drop the ND-arrow.
Processing ND-arrows therefore requires another approachAfter processing all ambiguous cases, the algorithm out-
First, similarly to the PC-algorithm from [23], we use a simpl@uts a DAG representing a causal model compatible with
chi-squared test to identify whether the two variables ambservations from the system. This causal diagram can the



be used as a basis for further analysis. A rst possibility iB. Causal Inference on Causal Bayesian Network

to use it to infer potential causes to unusual situations, and agJpon completion of the training, the resulting Bayesian Net-
such be included into a broader-scoped explanation process{grk can be seen as a “conditional probability machine”[5].
A second prospect, detailed here, is to use this diagram|agan be used for different tasks requiring inferring new
the structural basis of a Bayesian Network for ner causep<lnow|edge on the system. For instance, [19] shows how a
inference. Bayesian Network can be used to compute the probabilities
of different diseases compatible with the observed symptoms.
i o o o . The inference can then also be used to infer probabilities of
In thg literature, trammg a Bayesian is usually divided '”t9et unseen symptoms and which further examinations would
two main parts[5] : learning the structure of the graph arjgth most useful. This example shows the different possibilities

estimating its parameters. Since we use the previously learggh e by a Bayesian Network: diagnostic and predictive
causal diagram as a base structure, we will only focus in thigerence.

part on learning the different parameters of the network, i.e.
the probability tables for each node conditioned on its parents.
We will call the resulting graph 8ayesian Causal Network

to emphasize its partlpular strycture: while us_ual Bayesian ¢ y g equal tox?” As g. 9a shows, if evidence is put
Networks do not entail causality between their nodes, our on nodeP, the inference will propagate following the

approach leads to a graph whose connections entail a cause- giraction of causal arrows, to the children of the affected
effect relation. nodeP
To estimate these parameters, a conventional approach is Diagnostic On the other hand, diagnostic inference is

to use a maximum likelihood estimat@@DO], which can interested in looking into the probable causes of observed
be resumed as estimating variables values given their parents' consequenceswhat would be the cause ok = x?”
value_s only from past observational data. For example, if we  The inference therefore goes backwards, as displayed in
consider the graph from g. 8, we would compupe, with: g. 9b: from the observation o, we infer the probable

state ofP, which will entails consequences ovdr and
1) T.

In either case, inference works as follows: we denote by
whereNT=; (w;H )=( jk ) iS the number of past occurrences oBel(X = x) the belief that a node takes a given value (see
(T;WiH) = (55 k). g. 3, where beliefs are displayed for each node). Following

an observation of the system, the beliefs of one or several
nodes are set to a set value. For instance, in g. 8, knowing
e that the person is present will set the valuePofto 1 with
probability 1. This change to beliefs will then be propagated
through the graph, following Bayes' rule.
° While we let the details of the propagation algorithm out
of the scope of this paper (readers interested in a complete
description of the process may refer to [15, 5]), we could
visualize the propagation mechanism as follows.
The propagation algorithm is iterative. At every step, each
1 node X passes the following messages: to its child¥en
0 1 0 1 x (Y) containing transition probabilities; to its parerds
x (Z) containing likelihood information. Conversely, it re-
ceives messages; (X) from its parents, andy (X ) from
its children (see ¢.9). Each node then updates its beliefs

Fig. 8: Example of a small Bayesian network. The probabili§ccording to the messages it receives:

C. Causal Model to Bayesian Network

Predictive: This kind of inference is interested in “guess-
ing” the most probable future state of the system, given a
con guration, i.e. answering the questidiwhat happens

NT=0 ;Wi )= :0)

Poo =
NT=0;wH =0 ;00 * NT=1;(W:H )=0 :0)

T
o
o
N

T=0 Poo Po1 P1o P11
1—poo |1 —Po1 |1 — P10 |1 — P11

table for node T is displayed. Bel(X)= (X) (X) (2
where Qs a normalizing factor, (X) = ~, v(X) and
However this conventional approach might be face somg¢X)= ", y(X) are the products of all messages received

issues for some estimations, notably if the number of occidrem children and parents, respectively. As shown by [15], for

rences is small. For instance, in our small example of g. &AGs, this propagation method converges to the beliefs values
it might not be possible to estimate the paramef®gis The satisfying the observations and the network's parameters in a
introduction of the do-operation removes this limitation, asite number of steps.

it becomes possible, for doable nodes, to generate all kind€Predictive and diagnostic inference then allows to answer
of situations required to observe the outcome and estimataious queries about the environment without having to fur-

missing parameters of the Bayesian Network. ther intervene on the system. Applications of such knowledge



Boolean variable Simulation measure
P person (User.x, User.yR room
thermomether room.temperature threshold
\ outdoor outdoor.temperature threshold
light light.powerStatus 1
presence sensor.presenceSensed
power house.powerConsumption threshold
thermometer thermometer.temperature threshold
window window.open= 1

TABLE llI; Correspondence between simulation measures and
(a) Predictive (b) Diagnostic the Boolean variables.

1) Smart Home simulatorOur experiments are built upon
the iCasa platform[8]. Based on the OSGi framework, it offers
a service-oriented platform for simulations of smart home
physical systems. Its autonomic manager keeps track of cur-
rently used devices, which allows for runtime deployment and
modi cation of con guration. This enables the simulation of
scenarios where variable interactions are more intricate. In our
example, we simulated the behavior of different rooms, each
Fig. 9: Belief propagation in a Bayesian Network can be eithene characterized by physical variables such as temperature,
forwards (9a) for predictive applications, backwards (9b) falumination. Each of these rooms is equipped with different
diagnostic purpose, or both-oriented (9c). devices able to monitor or modify the room's physical vari-

ables: heater, thermometer, presence sensor, light, etc. Table
Il shows the different monitored variables of the example.
is further discussed in sec. VI. One might however note that, 88e entire con guration is shown in g. 10 using the iCasa
opposed to a traditional Bayesian Network, our proposed CBMeb Ul.
uses only causal relations. As such, one might argue that thdJsing a simulation, as opposed to using a real setup,
entailed reasoning appears more “natural’, a case con rmbtings two main advantages for our experiments. First, it
by the observation that causal relations are algorithmicaffiows to have a perfect knowledge of the groundtruth causal

(c) Both Directions

simpler [17, 4]. interactions, as they are directly encoded into the simulator.
Secondly, it provides an easy control over different parameters
(x=0, x=1) (x=0, x=1) and thus allow to perform, if desired, some interventions that
P (0.5, 0.5) P (0.89, 0.11) would not be feasible in real-life. This will allow to test the
L (0.45, 0.55) L (1, 0) . S .
H (0.7, 0.3) H (0.86, 0.14) effect of having access to more or less possible interventions
T (0.67, 0.33) T (0.73, 0.27) for our algorithm.
w (0.7, 0.3) w (0.7, 0.3)
TABLE I: Prior probability TABLE II: Posterior proba-
of each node of 9b bility after L=0.

V. EXPERIMENTS AND RESULTS

A. General Work ow

As previously stated in sec. I, we apply our methods
to a smart home environment. This choice is motivated by
various reasons. First, smart homes provide good examples

of closed environments monitored by SAS. As such, they

also provide simulators, which can be used to implemem!:'g' 1.0: Tf:e. |fCasa GUI shov_vmgdthe_tﬁasm setup for our
an intervention operator without being limited by common EXperiments. four Tooms equipped With a presence sensor

physical constraints (time, safety issues, incompatibilities). Inthggering heating and lighting, and a thermometer.

addition, they can present unusual or surprising situations

where the use of a causal diagnostic can help intervene on th@) Observation Data GenerationOnce the initial setup
system to improve performance[9, 3]. The following sectiois complete, we let the simulation run while the different
describes in detail our work ow, from data generation tdouse's devices are left in “autonomous mode”, i.e. they are
training the CBN and using it for inference tasks. able to adapt to changes of condition to maintain some key



environment variables within a target range, for instance tloatput depicted in g 12a. Note how the presence of ND-nodes
temperature and CO2 concentration of each room. At runtimatroduces ND-arrows emerging from them. The next step of
we randomly act on some of these variables or componepts algorithm processes this raw output to remove the least
to observe how the system reacts to change. In total, aigni cant arrows to make it a DAG that is compatible with
continuous observation generated around 500 data points Sitiee observations. The output of this step, shown in g. 12b,
values from variables are originally numerical, we convedontains two arrows agged as ND-arrows. When comparing
them to Boolean value by using simple threshold comparisoisis nal output to ground truth, in g. 13c, we notice that one
Thus, we obtain a set of Boolean observations which are usgdhese ND-arrows was erroneous, displaying a performance
to observe correlations between variables. limit in the case of ND-nodes. On the other hand, one causal
3) Intervention Data GenerationTo perform interventions, relation, between light status and power power consumption,
we use the possibility offered by the simulator setup to disablas missed by our approach. This mistake can be explained
some devices. Disabled devices will no longer react to théir this situation, by the relatively small impact of light, in
input sensors, thus achieving the Markov blanket independermanparison to the heater, on power consumption.
implied by intervention[14]. Then the value of the device is set
to a xed value. For instance, the interventidio(Heater = .
1) will cause the heater to turn on while being insensitive @ ol
to any environment factor such as the detection of the user's

presence.
To generate intervention data, we then proceed as follows: °“td°°r

we sample the house in a statewhere each variable is
assigned a value, and from this state, make an intervention

power

do(X = x) on a selected variable. We did 20 interventions per Demoresy
node at each stage. After a set time period we measure
the resulting state of the hous®, eventually considering @)

only variables of interest (variables correlated X9. The presenc power

period . is set to a given value manually chosen from prior

experiments with the simulator, to allow the system reach an /

equilibrium state after the intervention. We will discuss further . @
outdoor

time considerations in sec. VI.

B. Results

The causal model of the simulation we used for our experi-
ments is displayed in g. 11. We rst consider three variables,
namely the presence sensor, the house's power consumption

. . . b
and the room's temperature as ND-nodes. While the simulation ()
setup would allow us to intervene on them, we introduced presence—» power
this limitation to observe the impact of ND-nodes on causal

discovery.

@ @
presenc power

thermometer
outdoor| @
(c)
Fig. 12: Results of our approach applied to the smart home

simulation. The raw output of conditional testings, shown in
thermometer (12a), is then processed to remove less signi cant arrows to
obtain a DAG (12b). (13c): comparison between this output
Fig. 11: Groundtruth causal model for the living room. Nonand the ground truth diagram from g. 11: the red arrow is a
doable variables are shown in blue. missed relation while the yellow one is a connection wrongly

added to the model.

1) Causal Bayesian Network learninghe construction of

the causal graph is shown in g. 13. First, observations of Building on the structure of the causal graph presented in
correlated variables and results of interventions yields a “rang. 13, we complete the learning process by using maximum

thermometer



—> ¢ light —| .
person—| e light — power

i
NT I

thermometer
thermometer

(b)

VI. DISCUSSION AND FUTURE WORK

While our experimental setup of the smart home was set to
be close to a real-life use case, some limitations still remain
in our approach, some of which will be discussed here.

The rst major assumption is that the causal model of the
system can always be represented by an acyclic graph. This
limitation is common in the literature on Causality Theory
([17, 14, 23]. However, especially in the context of SAS,

it is likely that retro-actions occur between devices and the
variables they monitor: for instance, consider how a “smart”
heater would turn on depending on the room's temperature.
One potential workaround would be to take time into account,
which removes any ambiguity regarding the direction of a
causal relation.
However adding time to the equation is no easy task: in
© sec. V, we argued that for the purpose of our demonstration,
we used a xed time period ; after which we consider the
Fig. 13: Results of different setup of ND-node compare withonsequences of interventions. This xed value entails several
the ground truth diagram from g. 11 issues: as discussed iM@DO], different causal mechanisms
can have different time characteristics; how can one knows
how long is long enough when waiting for the consequences of

likelihood estimates to nally provide a Causal Bayesian Nef mtervenﬂop. E.X'Stmg methods bropose to estimate the time
interval following interventionstpdo]: in the near future, we

work. Table 1V shows the probability table for the thermome- der i . il htothe | .
ter, conditioned by its three parents nodes: heater, outdoor &r?&'s' er integrating a similar approach to the learning process

@)
—» light —— power

e

thermometer

window. of our Causal Bayesian Networks, as to reduce the number of
parameters.
Reater T T o T 0TI T 17T . Furthe'rmore, our approach requires a certain number of
outdoor 0o Tol 1T 1T ol o 111 interventions on the system, and has shown to perform better
window 0O [I[ 0[] T[]0 [1T]o0o][1 when only a limited number of variables are non-doable. These
thermometer=0| 0.5 | X | 0O 0 |10 10| X | X issues are minor in a simulated example, but can be limiting
thermometer=1] 095 [ X [ 1.0 [ 1.0] 0 | O | X [ X when operating on a real-life environment. A workaround is to

TABLE IV: Conditional probability table of thermometer. consider to have access to a model on the environment, such
as a “digital twin"[20], which our algorithm can use.

Having causal diagram of a system, as opposed to a simple
Bayesian Network, offers possibilities to be integrated into
explanations frameworks. For instance, we may use Causal

. . . . B ian Network in conjunction with th neral Explanator
CBN with minimal prior knowledge was the ability to adapt t ayesian Netwo conjunctio © general Explanatory

| situati detect th q knowledae t gine proposed by [3]. This use case would bene t from both
unusual sriuations, detect them and use knowledge 10 proviQgs ence directions: diagnostic can be used as a powerful tool

explanation to the user. Such a situation may occur in opf ropose hypotheses for abductive inference (i.e. nding the

E)épsgmﬁir\l}?ltie:#g:ﬁzztth?c::jnfcrgstﬁr hr?:akr)s er:jgcirc’fsm(enr:; se of an observed phenomenon), while predictive inference
P y y ght be used to explore the potential consequences of a

the light or the heater). In our setup, four rooms are S|mulat§ bposed solution, in the context of an explanation.

with the same devices, however the precise location of devi €S uture work may focus on optimising learning for large

within each room is random. This leads to situations Wherﬁetwork, for example, use hierarchical learning, i.e. learning

in one of the rooms, the light is sufciently close to thethe causal network of several areas and then learn the causal

: o | : .
light so t_hattha new clausa:jl rlel?'[t|§|hght ' Fthermc_)trﬁti:?r) relationships between them. Or nd a way to reduce the
appears in the causal model of the room. Face wi is event,or of do-operations.

our algorithm was able to see the new connection in the
corresponding room. VIl. CONCLUSION

In this particular case, the diagnostic inference offered by We work towards the implementation in real-life SAS of
our approach allows to nd the cause of a peculiar behavitihe methods of Causality Theory. We have seen how inter-
of the system!The thermometer reports a hot temperaturevention operations could be performed on a digital twin of
while the heater is off’ In this case, diagnostic inference oran environment to train a causal diagram, which can later
the Bayesian network would initiat€ =1 andH =0, and be used as a basis for our Causal Bayesian Network. This
would inferP(L =1 j (T;H)=(1;0)) = TODO. work ow has shown encouraging results in the example of

2) Changing Learning Setup:
3) Unusual Causal RelationsA motivation for learning



a smart home and, since it required no ad hoc knowledffel]
about the particularities of the smart home context, can be
generalized to other comparable setups.

Knowing the Causal Bayesian Graph offers advantages for
applications such as explanations, given the more “natural”
source of relations it entails, compared to a more traditional
Bayesian Network. As such, we consider using this tool as
a mean to perform abductive and predictive inference in[82]
broader explanatory framework.
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