Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Communication dans un congrès

Monte Carlo Tree Search Bidding Strategy for Simultaneous Ascending Auctions

Abstract : We tackle in this work the problem for a player to efficiently bid in Simultaneous Ascending Auctions (SAA). Although the success of SAA partially comes from its relative simplicity, bidding efficiently in such an auction is complicated as it presents a number of complex strategical problems. No generic algorithm or analytical solution has yet been able to compute the optimal bidding strategy in face of such complexities. By modelling the auction as a turn-based deterministic game with complete information, we propose the first algorithm which tackles simultaneously two of its main issues: exposure and own price effect. Our bidding strategy is computed by Monte Carlo Tree Search (MCTS) which relies on a new method for the prediction of closing prices. We show that our algorithm significantly outperforms state-of-the-art existing bidding methods. More precisely, our algorithm achieves a higher expected utility by taking lower risks than existing strategies.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal.telecom-paris.fr/hal-03842027
Contributeur : Marceau Coupechoux Connectez-vous pour contacter le contributeur
Soumis le : lundi 7 novembre 2022 - 12:22:48
Dernière modification le : lundi 14 novembre 2022 - 16:13:03

Fichier

rawnet22.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Alexandre Pacaud, Marceau Coupechoux, Aurelien Bechler. Monte Carlo Tree Search Bidding Strategy for Simultaneous Ascending Auctions. 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt) 2022, Sep 2022, Torino, Italy. pp.322-329, ⟨10.23919/WiOpt56218.2022.9930539⟩. ⟨hal-03842027⟩

Partager

Métriques

Consultations de la notice

0

Téléchargements de fichiers

0