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Abstract—A smart home system is realized by implementing from the inhabitant. And the inputs become complicated when
various services. However, the design and deployment of smart the desired services are complex or there are many connected
home services are challenging due to their complexity and opiacts. In addition, this kind of approaches cannot create
the large number of connected objects. Existing approaches . if the inhabitant onl . the t t value f
to the smart home system to create services either require services It the inha .' ant only species the target value .or
complex input from the inhabitant or can only work if the the controllable environment state, but not the regulation
inhabitant speci es regulation solutions rather than targets. solution. And conicts may arise when services request the
In addition, smart home services may conict if they access same actuators to perform different actions. Furthermore, it is

the same actuators. Learning methods to dynamically generate j,,q1tant to consider the inhabitant's reactions when design-
smart home services are promising ways to solve the above.

problems. In this paper, depending on the ability to consider the Ing a L_Jsgr'f”endly smart hom? SyStem according to [4]. W!th
composition of services and their mutual in uence, we propose the existing work on transforming services created by learning
several reinforcement learning-based architectures for a smart methods into understandable ones [5], learning methods for
home system to dynamically generate services. The expecteddynamically generating smart home services are promising
advantages are, rst, that the smart home services can propose qq,tions to overcome the above problems and create a user-
the states of the actuators by considering the target values of _ . . .
the controllable environment states given by the inhabitant or friendly smart home: In this paper, we propqse several learning
by interacting with the inhabitant in a simp|e and natural way; method'based arChIteCtureS W|th a CO”eC“Ve name SHOMA
and second, that there is no con ict between these propositions. (Smart HOme-based Multi-services Architecture). Each ser-
We compare the performance of the proposed architectures vyice in these architectures is modeled based on reinforcement
using several simulated smart home environments with different learning (RL) [6]. Since the basic idea of RL is that an arti cial
services and select the architectures with the best performance , . . . .
agent learns the system's behavior patterns by interacting with

concerning our prede ned metrics. i . .
Index Terms—service orientation, reinforcement learning, the environment, it can be used to dynamically generate smart

multi-agent, smart home home services considering the inhabitant's reactions to the
proposed actuators' actions.
. INTRODUCTION In the rest of the paper, Section Il presents existing work

Implementations of various services contribute to the redll the development of smart home systems through the
ization of a smart home system. Depending on the proble‘?ﬂeat'on of various services. Section Il introduces how RL

and the corresponding proposed solutions, there are differEht/Sed o dynamically generate a single smart home service.
de nitions of services. For example, in [1], each device i§ect|on IV presents the proposed architectures to dynamically

considered as a service. In [2], a service is implicitly expressganerate multiple smart home services. Section V describes the

as an action that can be performed if certain conditions arenulated environments used to evaluate the proposed archi-

met. In [3], a service is described as a target of functions tHgctures. Section VI analyzes the results of the experiments and
are triggered under certain conditions. In our work, we de mEelects the architectures with the best performance. Section VII

that each smart home service manages a controllable eriyjMmmarizes the work and provides interesting perspectives.

ronment state by instructing actuators to perform appropriate I
actions with respect to environment state values detected b
the corresponding sensors.

Many approaches have been proposed for developing snfd
home systems by creating various services. Most of these

. RELATED WORK

)f\/lany applications try to implement a smart home system by
ﬁating multiple services. For example, in [7], the proposed
1art home system contains low and high levels. The low

proaches belong to the knowledge-based approaches. How _ghlllncllu_dels (;he execution ((j)fl_vanouls dewcfes, Wh”e the;
despite the capability to provide understandable services, ¥H8 evel includes system modeling, rule transformation, an

knowledge-based approaches usually require manual inp@@tem reasoning. System modeling uses the sg_mannc_web 0
model the environment and ECA (Event-Condition-Action)-

based descriptions to simulate the operation of services. Rule
978-1-5386-5541-2/18/$31.00 ©2018 IEEE transformation is about converting ECA into executable se-



mantic rules, e.g., SWRL (Semantic Web Rule Language). S c
And reasoning is about deriving new facts based on SWRL. , AL i
These new facts are converted into commands and sent to the environment inhabitant
devices for execution. However, in this method, the inhabitant
has to manually design rules and there is no guarantee that

. . . . service z
the services are conict-free. [8] proposes an application

called RHDL (Recognition Habit of Daily Living) to generate H algorithm
the habitual smart home service. RHDL uses a clustering L y

algorithm to learn the inhabitant's habitual behavior which is
then converted into rules. These rules are used together WEP
the knowledge representation to derive new facts, and the new
facts are translated into control commands for devices that
change the environment state values. However, RHDL canf@licy is used to select the action that each actuator will
consider the inhabitant's (dis)satisfaction with a proposgskrform. The process is as follows: After the sensors detect the
smart home service. [9] proposes a platform called Synapsigservable environment stat®s the interpreter selects the RL
using four parts to create services. First, Synapse collegigorithm's input state$ from O. The action quality values
information from the real world through the sensor evem for each action of each actuator are then proposed by the
collection part and converts the information into useful corrL algorithm, and the policy uses a function or rule, e.g., the
texts. Then, the service control part controls various devices t@reedy function, to select the action for each actuator, where
provide services. Next, the Synapse core part uses the HMiMs the set of selected actions for all actuators. The execution
(Hiden Markov Model) to model the relationship betweegf the actuators contributes to the updating of the controllable
services and events collected by sensors. Finally, the servigagironment state withif. In this situation, the inhabitant has
recommended by the HMM are listed in the last part of gvo options to provide his input: He can have the actuators
user interface where users can browse and launch the availgdgform different actioné°to achieve the desired controllable
services and update the recommended services. However, giigironment state. Changing the actions of the actuators from
work also does not consider the inhabitant's reactions to tieto A° contributes to the computation of the reward by the
recommended services. interpreter. Or, he can directly specify the target valuef the

In this work, we propose RL-based SHOMA architecturesontrollable environment state, and the interpreter can compute
for a smart home system to dynamically generate servicgise reward by measuring the difference between the updated
This system can reduce the manual intervention of the inhaontrollable environment state afd Then, based on the input
itant, interact more naturally with the inhabitant, and ensugg the inhabitant and the updat€l the interpreter selects the
that there are no conicts between the generated services. RL algorithm's input state$ from O and calculates the reward
r. Both S with the original and updated values ana@re used

to train the RL algorithm. The updated RL algorithm is then
Before presenting the SHOMA architectures for modelingged to repeat the above process.

smart home system to dynamically generate multiple services,
we rst show how a single smart home service can be |V. PROPOSED ARCHITECTURES FOR DYNAMIC
dynamically generated based on RL. GENERATION OF MULTIPLE SMART HOME SERVICES

According to the proposed service de nition, we know To better illustrate the principle of SHOMA architectures,
that a service is implemented by proposing actuators' actiong rst present a smart home system with three services. The
according to the observable environment states detectedgogcess of creating a smart home system with more or less
the sensors. Moreover, to allow a service to interact withan three services using SHOMA architectures is the same as
the inhabitant during its implementation, it should be able the process with three services presented in this section. We
consider the inhabitant's (dis)satisfaction or the target valuefer to the three services as;z,, and zz. They belong to
speci ed by the inhabitant. Therefore, RL is used to model different types of services and can represent any speci ¢ smart
single smart home service that can be dynamically generatesime services. The actuators associated with each service are:
by the dynamic propositions of the actuators' actions. The) fd;;d,; dsg for z3; (2) fdz; ds; dsg for zp; (3) fdy; ds; dsg
corresponding principle is shown in Fig.1. for z3, whered, is shared by the three services adgl is

A smart home servica contains an interpreter, an RLshared byz; andz;. In addition, the environment states that
algorithm, and a policy. An interpreter is used, rst, to seleaach service considers arer) O,, = f0;,:1;0,:2; @
statesS from observable environment stat€s whereS is for z;; (2) Og = f0,,:1;0.,:2; g for z;
used as input to the RL algorithm; second, to generate O,, = f0,:1;0,,:2; g for zz. The environment
reward r using a reward function that considers the inpigtates converted by the interpreter and used as input to the
S and the inhabitant's (dis)satisfaction. The RL algorithrRL algorithm in each service are expressed $s;S,,,
proposes action quality values for each possible action afid S,,. The corresponding target or preferred values for
each actuator. In our study, Q-learning [10] is used. Thhese inhabitant-speci ed controllable environment states are

A

. 1. Leverage RL to dynamically generate a single smart home service

I11. DYNAMIC GENERATION OF ONE SMART HOME SERVICE
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Assuming thatz;;z,, and zz are individually implemented
by respecting the principle in Fig.1, we have the following
modules: interpreteRF,, , rl algorithmRL,, and policyPO;,
for z;; interpreterRF,,, RL algorithmRL;, and policyPO,,
for z,. The same is true fozs. _ _ actuators. Then the policfO, uses a function to decide the
'Using the three services and their associated modulesaiition for each actuator, e.g., the greedy policy selects the
different ways, we de ne eight architectures in SHOMA basegtion with the highest action quality value for the actuator.
on the concept of multi-agent RL (MARL) [11] to model aThe controllable environment states update their values as the
smart home system to dynamically generate services: Ofuators perform the selected actions. Based on the updated
Learning System-based Architecture (OLSbA), Qmix-base@ntrollable environment states and the inhabitants target
Architecture (QmixbA), Remove Shared Actuators-based Apajye C for the controllable environment state or actioh$
chitecture (RSAbA), Common Controller-based Architecturgr, : RF,, and RF,, calculate the reward,,;r,, andr,.
(CCbA), Priority-based Architecture (PbA), Equal PriorityThe total rewardr, = r,, + I, + t,, is used together with
based Architecture (EPbA), Total Reward-based Architectuige environment states before and after the update to train the
(TRbA), and Context Sharing-based Architecture (CSbA). AR algorithm in z. Then, the updated RL algorithm or the
types: “merged service-based architectures” and “compositez) Qmix based ArchitectureWe use the principle of [12]
service-based architectures”. The difference between th%nimplement the QmixbA shown in Fig.4. To determine
depends on whether only a single service 1s used to moggl actions of the actuators, QmixbA introduces a learning
the entire smart home system. For “composite service-basgiem called Qmix that takes the action quality value outputs
architectures”, the architectures can be further divided m@z :Q,,:Q,, from the RL algorithmRL,,: RL,, and RL,

T : : [T H 1 27 3 1 2 3
three subtypes: “indirect mutual in uence”, “direct mutuals inputs and a hyper neural network [13] to determine the
inuence” and “without mutual in uence”. The difference \ 5 es of its parameters. Moreover, the total reweasd=
between them lies in how the shared actuators’ actions re 1 v+ r, is used to determine the learning direction of
determined. For “indirect mutual in uence” and “direct mutuabmix and the hyper neural network. Finally, Qmix generates
in uence”, each service proposes actions for the shared actygs action quality values for the possible actions of each

tors under the indirect or direct in uence of other services. IBctuator and a policy is used to select the nal action that
“without mutual in uence”, the actions of the shared actuatorssch actuator will perform.

are determined by one service or controller, thus eliminating
the in uence between services. B. Composite service-based architectures

A. Merged service-based architectures In composite service-based architectures, each controllable
The rst architecture category is the merged service-basedvironment state is controlled by a service. Since the im-
architecture, where all services of the smart home system atementation of a service is realized through the execution
merged as a single service to regulate multiple controllabd® one or more actuators, certain actuators may be shared by
environment states. Two SHOMA architectures belong to thigultiple services, leading to potential con icts. Based on the
category: OLSbA and QmixbA. mechanisms used to decide the states of these shared actuators,
1) One Learning System based Architectuftne OLSbA “composite service-based architectures” can be further divided
shown in Fig.3 models the entire smart home system 0 three subcategories: “without mutual in uence”, “indirect
a single servicez. In the initial time step, the interpretersmutual in uence”, and “direct mutual in uence”.
RF;,; RF,, and RF,, transform the observable environment 1) Without mutual in uence:“without mutual in uence”
state€0;, ; O, andO,, into statesS;, ; S, andS,,, which are refers to architectures where shared actuators are controlled
used as input to the RL algorithm. And the algorithm generatbg only one service or controller, which involves two archi-
action quality values for all possible actions of all availableectures: RSAbA, and CCbA.

Fig. 3. Structure of OLSbA
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a) Remove Shared Actuators based Architectuts:
RSADbA, only one shared service is maintained to determine
the states of the shared actuators. The service that is mai
tained is the one whose corresponding dynamic characteristic
about the controllable environment state is the simplest. In©=
the given example with multiple services, we assume that the L —
order of complexity of each service isomplexity (z;) <
complexity (z) < complexity (z3), therefore,d, andd; are
controlled byz;. Thus, RSAbA can be expressed in Fig.5.

L
common
controller

b) Common Controller based Architecture€CbA de-
nes a common controller modeled by an RL algorithm for
each shared actuator. As shown in Fig.6, a common controller
CCy, is de ned for d, sinced, is shared byz;, z,, and
z3. CCqy, takes the inputs of the RL algorithms of the
shared serviceS; = S;, [ Sz, [ Sz, and the total reward
rg, = rz, + Iz, + Iz, asits input, and proposes the action for
the actuatod,. And for the actuatods, a common controller
CCy, is dened since it is shared by; and zz. It takes
the inputs of the RL algorithm of the corresponding shared
servicesS;, ;. = S;,[ Sz, and the total rewarty, = r;, +r,,
as input, and proposes the action for the actuegor

2) Indirect mutual in uence:The category “indirect mutual

in uence” includes architectures where each service proposes
states of the shared actuators under the indirect in uence of
other services. The nal states of the shared actuators are
determined by considering the propositions of all services.
They can in uence the states of the shared actuators proposed
by each service in the next time step. Therefore, the nal states
of these shared actuators can be considered as the indirect
in uence of other services on each service. PbA and EPbA
are two architectures of this type.

a) Priority based Architecture:In PbA, a priority cal-
culator modeled by an RL algorithm is de ned. Each pri-
ority calculator proposes priorities for services that share
an actuator. Fig.7 in yellow shows howi;z, and zz can
be modeled with PbA: Each service receives its associated
observable environment states, which contain the target value
of the controllable environment states or action changes of
the actuators made by the inhabitant, as input. Then, for non-
shared actuators, each service directly proposes the actions
that these actuators will perform. For each of the shared
actuators, the action quality values of all possible actions
proposed by the shared services are multiplied by the priorities
of the corresponding shared services to obtain the weighted
action quality values. These priorities are proposed by the
corresponding priority calculator. The action with the highest
quality is then selected for this shared actuator. For example,
d, is shared byz;;z, and z;. Each servicez uses an RL
algorithm to propose action quality valugg!; Qg , and Qg

C i
Envi U
* A
Ad,| Gd, |Agd ad, 0 Bdo inhabitant
|
FAP policy|VFAP policy, L —
POy, PO,
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service 21 ——
0 A ‘ (),
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Fig. 7. Structures of PbA (in yellow) and EPbA (in red)



for d,. A priority calculatorPCy, is de ned for d,. It takes
the inputs of the ensemble RL algoritt® = S,, [ S;, [ Sz,

as input and proposes three prioritjgs, pdz, pz whose sum

is one. A policy based on the value function addition principle
(abbreviated as VFAP in this paper) introduced in [14] is used
to compute the nal action quality valu®gy, for ds:

Qu, = Qap P2+ QF pi2 + QF peZi (1)
and then selects the action with the highest action quality value
in Qq, as the action that, will perform.

b) Equal Priority based ArchitectureThe principle of
EPbA is shown in red in Fig.7. Instead of computing the
priorities of the services sharing the same actuators, EPbA
directly summarizes the action quality values of the shared
actuators and selects the actions with the highest action quality

values by following the VFAP policy. We can also say that all
shared services have the same priority with the value of 1 to

associate EPbA with PbA. Therefore, the example of UsiRg 5\qorithm as an additional reward for determining the states
the VFAP policy to calcglate the nal action quality values¢ hat shared actuator. Eor examptl, is shared byz; and
for the shared actuatat; is: z3. Therefore, the total rewandy, = r,, + r,, is used as an

Qd, = Qzyd + Qzpdy + Qzaidy: (2) additional reward and sent ®L,, andRL,,. By introducing
the total rewards, the states of the shared actuators can be
Hetermined by ensuring that all shared services receive high

Fig. 9. Structure of CSbA

action quality value imQq, as the one thad, will perform. rewards simultaneously
3) Direct mutual in uence: The direct mutual in uence b) Context Sharing based Architecturén CSbA, each
type includes architectures where each service proposes gg?\/ice takes as input its associated environment states, its

actpns of shared actuators under the direct in uence of of {dden states, and the hidden states of other services that use
services. For example, each service that shares the s

. : Ihe’same actuators. Each hidden state contains past information
actuators considers the total reward which results from addmgOut the associated service within a short period of time. As

itzie:i\(lzv:srciﬁem rtgesseit;ir\tlilczise.azrr]leste?;[/?éerer\r,wvzligst?grnthde;rzf?%own in Fig.9, service; considers its environment states
prop , its hidden stateBl,,, and the hidden statés,, andH ,,

of the shared actuator. Therefore, for each service sharing Bzéz andzs: while z, receives its environment sta@,., its
’ Z2 1

e Sulors h el e can e onsier o e i st o e i stte, anch, of . ano
' 3 as input. The same principle applies to the In addition,

CSbA are two architectures of th_'s type.of SHOMA. ~as in TRbA, the total reward is used. For each service, the
&) Total Reward based ArchitecturdRbA, as shown in piq4en states and total rewards are used as a direct in uence of
Fig.8, is a variant of EPbA. Unlike EPbA, TRbA adds the t0tgliher shared services that share the same actuator with it. The

rewards of services sharing the same actuator to each serviggges of the non shared actuators depend only on the output of

the action quality values of the associated services. The states
of the shared actuators depend on the action quality values
generated by a MultiLayer Perceptron (MLP)-based policy that

uses the action quality outputs of the shared services as input.

V. COMPARATIVE EXPERIMENT

To compare the performance of SHOMA architectures for
dynamic generation of smart home services, we conduct sev-
eral simulated experiments based on three simulated services:
a light service, a temperature service, and an air quality
service. Before the experiments, we describe how the environ-
ments are simulated to determine the values of the controllable
environment states that the corresponding services attempt to
regulate. When simulating these services, we disregard the
low impact actions. For example, we do not consider the heat

Fig. 8. Structure of TRbA generated by turning on the lamp.



temp

A. Simulated environment (4) sactt s Swery 2 fi=10for i 2 f 0;50g0.

The involved variables in the environment are as follows: 10 calculates; knowing the propositions, we rst assume
(1) sus: state of the inhabitant. (2¥e: outdoor light in- that the watt-hoursW h) of the air conditioner is 5. =

tensity. (3) sie: outdoor temperature. (43.: outdoor air 20 733 the specic heat of the air is constant andGs =
quality. (5) sy : indoor light intensity. (6)sy : indoor tem- 1:005 the air density is constant on average and has the value

perature. (7)sy : indoor air quality. (8)sp: state of the = 1:205(I§g=m3); and the room under study has the volume
lamp. (9) slght : stemp - sar -5 " the curtain state proposed? = 60(m*). Thus, the energy produced after the operation

by light service, temperature service and air quality servicgf the air conditioner for the duration of sacr; (h) is:
apq the nal %Jn:;galn state. (10%ac: §tate of the air con- Qact = ac  Sactt 4)
ditioner. (11)Sy," ;S ; Swin - the window state proposed . o
by the temperature service and the air quality service, aA@suming that the resulting indoor temperature at timel
the nal window state. (12)syp: State of the air purier. IS Su +1, the total energy that should be provided to maintain
(13) siemP - sar - working duration for windows and curtainsStrt +1 IS
proposed by the temperature service and the air quality ser- o =C vV is. i 5
vice, respectively. (1434 : air conditioner working duration. Qeart P ISt 1 S ] ©)
(15) sqpt : air puri er working duration. Andsy ;sy ands,  Besides, there is always the air circulation between the indoor
are the controllable environment states that light, temperatued outdoor through the window and curtain, thus, the resulted
and air quality services attempt to adjust. heat loss is:

1) Light service: The learning system associated with the feat = Lt Swett Cp (6)
; ; ; light
light service takes,s anq Sie @S input ands;, and gy aS \vhere L{(m3=s) is the air ow rate for indoor and outdoor
output. Among thems,s is randomly generated by following

. 2 . Yair circulation and can be calculated as:
the uniform distribution:sys: = Uit (0; nys), Wherenys is s

the total number of states of the inhabitant aid (0; nys) is L o= d d 2g(f ph 0
a function that randomly generates an integer between 0 inclu- t= Fh M dy '=d+ & |

sive andnys exclusive by respecting the uniform distribution.

s of one day is simulated with a Gaussian distribution [15)Vhere dn = 2(m), d = 2(m), and dy = 0:2(m) are

[16]: Sex = N (amplititude = 600; mean = 12;stddev = the height, length, and width of the window, respectively;
3)+5 U(0:1), whereN denotes the Gaussian distributiond = 9:81(m=s?) is the acceleration rate due to the gravity;
Also, some noise is added $.( , which is simulated using a = 0:019 is the Darcy-Weisbach friction coef cient; &
uniform distribution with a maximum value of 5. To simplifyiS the summarized minor loss coef cient; and and { are
the experimentse: is generated every 5 minutes ever)yhe indoor and outdoor air densities as a function of the
day. sp: can have multiple levels represented by integersOrresponding air temperature:

with Ieyel 0 indicating thgt the lamp _is off and _other levels er = 1:293(kg=m?) 273K )=(273(K ) + setr () (8)
indicating that the lamp is on. The light intensity the; .

can provide is  sjpt, where = 100 is the light intensity As a result, we have the relation:

that one level can provides'c'ﬂ?;{ has three possible values: 0, L= . 4+ Oheat 9
1=2,1 representing that the curtain is closed, half open, and Qneat = Qacit + Qiossi ©
fully open, respectively. Supposg sﬂﬂ?{ andsi; attime According to equations of (4), (5) and (6), we can obtain the

stept are known, we can obtaig); as follows: resulted indoor temperature:
- light . Q . 4 heat
St = Sip't + Sle- Sairt - 3 ac;t loss;t
Ir;t Ip;t le;t cur;t ( ) Strt 41 = Strt (10)
Cp \%

2) Temperature service:To adjustsy , the temperature _ N _ _
service learns to propose the stasgs; s°™ ;sie™ and the Where “+" represents the air conditioner is heating, and
corresponding working duratiosae ; sei* by considering denotes it is cooling.

Sus and se. Among these variabless,sy is simulated in 3) Air quality service: The air quality service controls
the same way as in the light servicee: is simulated indoor air quality by adjusting thesap; Swin ; Scur  Of the

with trigonometric functions [17] and expressed agi = actuators and their working duratis, and s, with the

A cogB (x D))+ CwhereA= 7,B= =12C =19 consideration ofsys and ss;. The detailed descriptions for
andD =4 andx is the corresponding time with unfitour  simulating the above states are as follovegs; is sim-

at time stept; the relation betweem andt is: x = t 5=60 uylated in the same way as in the light and temperature
with the time interval betweeh andt + 1 being 5 minutes. service. To simulatesse, we rst impute the atmospheric
The possible values for the temperature service's propositiagirbon dioxide dataset from quasi-continuous measurements
are as follows: (1)sact 2 fO; 1;1g with O for off, 1 for on American Samoa [18]. Imputation allows us to replace
heating and 1 for cooling; (2) sgr has the same rangethe anomalous data with surrogate data. In this study, the

as s'c'ﬂ?i ; (3) s&f{r‘,‘;’t’ 2 f 0;1g with O for off, and 1 for open; surrogate data that we use is the average of the corresponding

“on



data. Then, an interpolation is performed to obtain a data
set sampled every 5 minutes instead of hourly abm .
The states proposed for the actuators are adjusted by the
DON. The possible values for the actuators involved are:
(1) sapy 21 0;60; 170,280, 390, 500y with 0 being turning off,
and other numbers representing the values of the cubic meter
air ow rate (m3=h or CMH ) of the air purier; (2) s?{jm
has the same range 8y andsent ; (3) s, has the same
range assyit ; (4) Saptt ; St 2 fi=10for i 2 f 0;509g.

The controllable indoor air quality is inuenced by the
outdoor air quality and the air puri er and can be calculated
as follows: [19]:

Fig. 10. Architecture evaluations without constraint and with two services

_ 1 Sapit  Saptit Lt Swett Nus:t Bus:t
Sart +1 = Sart ( v Vi V]

X L . Nys: . X
= ) * Saet tTSWC“ + Sexhat usit bds't us Fig. 11. Architecture evaluations with constraint and two services

Voo
whereV andL, represent the same value as in the temperature
service environment settinGSexnat = 38000(ppm) is a
constant representing ti&0, content in the exhaled ain;s
is the number of inhabitants in the room. In this stualy; is
constant and has the val@igh,s; is theCO, breathing rate of
the inhabitant, whose value depends on the inhabitant's activity
and can be found in Table 3 and Table 4 in [20]. In this paper,
we assume that the inhabitant is between 21 and 30 years (’):Iig', 12. Architecture evaluations without constraint and with three services
so the physical activity leveVl corresponding t&,s isM =
f0; 1:4; 4; 1g. TheCO, breathing ratéys: associated witls,s
is st 2 f0;11:004(mg=9); 31:44(mg=9); 7:6635(Mg=9)g.

Xus IS the inhabitant's breathing time with a constant value
5 minutes between two time steps.

VI. EXPERIMENT RESULTS

In this section, to evaluate the SHOMA architectures and
select the architectures with the best performance, we rst
compare all the architectures with the temperature and air
quality services, with and without energy saving requiremendgcuracy of the temperature service, the air quality service, the
in the simulated inhabitant's habitual behaviors. From thigyo services that correctly suggest the state of the actuators
comparison, we select the architectures with better pel’f(yimultaneously, and the general performance. RSAbA and
mance. Then, we evaluate the selected architectures WBGbA perform best after EPbA. PbA is fourth, followed by
three services with and without energy saving requirement®bA. OLSbA, QmixbA, and CSbA perform worst.
to determine the best performing architectures. We then apply these architectures to the same test dataset

Following metrics are de ned to evaluate the performanasut with the saving energy constraint. The result is shown in
of the architectures(1) Accuracy of each service to proposerig.11. The result is almost the same as in Fig.10, except that
the actions of the actuators correctlg) Accuracy of all the performance of PbA drops sharply. With the exception
services to propose the actions of the actuators simultaneousiyOLSbA and QmixbA, the other architectures also show
correctly. (3) Average of all accuracy, which denotes thelight performance degradation, but not as severe as PbA. To
general performance of an architecture. The above accuragyhove the doubt that adding the constraint in the reward
indicates the number of samples in which each service faihction is not a good way to realize energy saving, we select
all services correctly propose actuators' actions so that thechitectures: RSAbA, CCbA, PbA, EPbA, and TRbA, with
updated controllable environment states match the inhabital’g@neral performance greater than or close to 50%, based on
target values, as a percentage of the total samples. the result in Fig.10 for three service-based experiments.

Fig. 13. Architecture evaluations with constraint and three services

A. Evaluation results with two services B. Evaluation results with three services

Fig.10 shows the result of the prede ned metrics for the Fig.12 shows the results without energy saving requirement.
experiment without energy saving requirement. It can be se€ompared to Fig.10, the performance of RSAbA and PbA
that EPbA generally performs better on all four metrics: thenproves, which means that introducing the light service helps



to improve the learning performance of the temperature and ailn perspective, it is important to evaluate the selected
quality services. For RSAbA, this can be because introduciagchitectures in the real environment. Moreover, it is promis-
the light service reduces the number of actuators controlled) to integrate the knowledge-based approaches into these
by the temperature and air quality services. For PbA, intrarchitectures to make the generated services understandable.
ducing the light service may provide more information to
decide which service should have higher priority. For EPbA,
the performance in the two gures is almost the same, soThis version of the contribution has been accepted for
introducing the light service has no signi cant impact. Theublication by ICMLA (IEEE International Conference on
performance of CCbA and TRbA is still not as good aMachine Learning and Applications), after peer review but is
the other three architectures: The performance of CCbA haat the version of record and does not re ect post-acceptance
slightly decreased. The performance of TRbA has dropp&dprovements, or any corrections.
signi cantly, so introducing the light service makes services
with TRbA architecture harder to learn the system patterns.
From the result in Fig.13, EPbA and RSAbA always havel] D. Chakiand A. Bouguettaya, “Fine-grained con ict detection of iot ser-

; ; vices,” in 2020 IEEE International Conference on Services Computing
the best performance that is hardly affected. This shows that (SCC) IEEE, 2020, pp. 321-328.

introducing energy saving constraint and expressing it as thg v. sun, x. wang, H. Luo, and X. Li, “Con ict detection scheme based
inhabitant's habitual behaviors work well for them. However, on formal rule model for smart building system$ZEE Transactions

the performance of PbA decreased signi cantly compared with, on Human-Machine Systemal. 45, no. 2, pp. 215-227, 2014.

. . . R X i M. Ma, S. M. Preum, W. Tarneberg, M. Ahmed, M. Ruiters, and
Fig.12, which is the same phenomenon as that in Fig.11." j stankovic, “Detection of runtime con icts among services in smart

Therefore, expressing the energy saving constraint in the in- cities,” in 2016 IEEE International Conference on Smart Computing
habitant's habitual behavior is not a good method for PbA, an% (SMARTCOMP) |EEE, 2016, pp. 1-10.
y

. M. Chan, D. Estve, C. Escriba, and E. Campo, “A review of smart
perhaps other methods should be used to describe the energynomes—present state and future challeng€nmputer methods and

saving. The performance of CCbA and TRbA has decreased, programs in biomedicinevol. 91, no. 1, pp. 55-81, 2008.

which may be because introducing more services along witl§! M- Qiu. E. Najm, R. Sharrock, and B. Traverson, "Pbre: A rule
extraction method from trained neural networks designed for smart home

the constraint makes the environments more complex. As & services,” ininternational Conference on Database and Expert Systems
result, learning the characteristics of the environment using Applications Springer, 2022, pp. 158-173.

the two architectures becomes more complicated [6] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
’ J. Pineau, “An introduction to deep reinforcement learningrXiv

The above four experiments show that OLSbA and QMIXbA  preprint arxiv:1811.125602018.
perform worse than most composite service-based architelg L. Mainetti, V. Mighali, L. Patrono, and P. Rametta, “A novel rule-

; ; A based semantic architecture for iot building automation systems,” in
tures, which proves the advantage of composite service-based 2015 23rd International Conference on Software, Telecommunications

architectures. Moreover, the comparison of the composite ang computer Networks (SoftCOM)IEEE, 2015, pp. 124-131.
service-based architectures shows that EPbA and RSAbA hajg P. Wang, H. Luo, and Y. Sun, “A habit-based swrl generation and

reasoning approach in smart home,” 2015 IEEE 21st International
better performance than the others, and thus are selected for Conference on Parallel and Distributed Systems (ICPADEEE, 2015,

our future research on the smart home system. Even though . 770-775.
only experiments with two and three services are discussed @1 H. Si, Y. Kawahara, H. Morikawa, and T. Aoyama, “A stochastic

; ; ; ; approach for creating context-aware services based on context his-
this paper, these experiments considered aI_I possible problems tories in smart home COGNITIVE SCIENCE RESEARCH PAPER.
that may occur when more than t.hree services work together. ynvERSITY OF SUSSEX CSRRI. 577, p. 37, 2005.
Therefore, our results are most likely applicable for systemi®] C. J. C. H. Watkins and P. Dayan, “Q-learningffachine Learning

with more than three services, even though these systems may ‘}:?t'i-)s_ﬁaoi”gr-g /fé o /Efgggggzzégs’v'ay 1992. [Online]. Available:
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