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Abstract

Audio source separation is the task of estimating the individual signals of several sound sources

when only their mixture can be observed. It has several applications in the context of music

signals such as re-mixing, up-mixing, or generating karaoke content. Furthermore, it serves as a

pre-processing step for music information retrieval tasks such as automatic lyrics transcription.

State-of-the-art performance for musical source separation is achieved by deep neural networks

which are trained in a supervised way. For training, they require large and diverse datasets

comprised of music mixtures for which the target source signals are available in isolation. However,

it is di�cult and costly to obtain such datasets because music recordings are subject to copyright

restrictions and isolated instrument recordings may not always exist.

In this dissertation, we explore the usage of prior knowledge for deep learning based source

separation in order to overcome data limitations.

First, we focus on a supervised setting with only a small amount of available training data. It is

our goal to investigate to which extent singing voice/accompaniment separation can be improved

when the separation is informed by lyrics transcripts. To this end, we propose a general approach

to informed source separation that jointly aligns the side information with the audio signal using

an attention mechanism. We perform text-informed speech-music separation and joint phoneme

alignment to evaluate the approach. Results show that text information improves the separation

quality. At the same time, text can be accurately aligned with the speech signal even if it is

highly corrupted. In order to adapt the approach to the more challenging task of text-informed

singing voice separation, we propose DTW-attention. It is a combination of dynamic time warping

and attention that encourages monotonic alignments of the lyrics with the audio signal. The

result is a novel lyrics alignment method which requires a much smaller amount of training data

than state-of-the-art methods while providing competitive performance. Furthermore, we find

that exploiting aligned phonemes can improve singing voice separation, but precise alignment and

accurate transcripts are required. Modifications of the input text result in modifications of the

separated voice signal. For our experiments, we transcribed the lyrics of the MUSDB corpus and

made them publicly available for research purposes.

Finally, we consider a scenario where only mixtures but no isolated source signals are available

for training. We propose a novel unsupervised deep learning approach to musical source separation.

It exploits information about the sources’ fundamental frequencies (F0) which can be estimated

from the mixture. The method integrates domain knowledge in the form of di�erentiable para-

metric source models into the deep neural network. Experimental evaluation on a vocal ensemble

separation task shows that the proposed method outperforms F0-informed learning-free methods

based on non-negative matrix factorization and an F0-informed supervised deep learning baseline.

Combining data-driven and knowledge-based components, the proposed method is extremely data-
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e�cient and achieves good separation quality using less than three minutes of training data. It

makes powerful deep learning based source separation usable in domains where labeled training

data is expensive or non-existent.
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Résumé

La séparation de sources audio est la tâche consistant à estimer les signaux individuels de plusieurs

sources sonores lorsque seul leur mélange peut être observé. Elle a plusieurs applications dans

le contexte des signaux musicaux, comme le remixage, l’up-mixing ou la génération de contenu

karaoké. En outre, elle sert d’étape de prétraitement pour les tâches de recherche d’informations

musicales telles que la transcription automatique de paroles de chansons. Les performances de

l’état de l’art en séparation de sources musicales sont obtenues par des réseaux neuronaux pro-

fonds entrâınés de manière supervisée. Pour leur entrâınement, on a besoin de grandes bases de

données diversifiées composées de mélanges musicaux pour lesquels les signaux sources cibles sont

disponibles de manière isolée. Cependant, il est di�cile et coûteux d’obtenir de telles bases de

données car les enregistrements musicaux sont soumis aux restrictions de droits d’auteur et les

enregistrements d’instruments isolés n’existent pas toujours.

Dans cette thèse, nous explorons l’utilisation d’informations supplémentaires pour la séparation

de sources par apprentissage profond, afin de s’a�ranchir d’une quantité limitée de données.

D’abord, nous considérons un cadre supervisé avec seulement une petite quantité de données

d’entrâınement disponibles. Notre objectif est d’étudier dans quelle mesure la séparation voix

chantée/accompagnement peut être améliorée lorsque la séparation est informée par la transcrip-

tion des paroles. À cette fin, nous proposons une approche générale de séparation de sources

informée qui aligne les informations secondaires avec le signal audio pendant la séparation grâce

à un mécanisme d’attention. Nous e�ectuons une séparation parole-musique informée par le texte

conjointement avec un alignement des phonèmes pour évaluer l’approche. Les résultats montrent

qu’information textuelle améliore la qualité de la séparation. En même temps, le texte peut

être aligné avec précision avec le signal vocal même s’il est fortement perturbé. Afin d’adapter

l’approche à la tâche plus di�cile de la séparation de la voix chantée informée par le texte, nous

proposons la technique de DTW-attention. Il s’agit d’une combinaison de dynamic time warping

(déformation temporelle dynamique) et d’attention qui encourage les alignements monotones des

paroles avec le signal audio. Le résultat est une nouvelle méthode d’alignement des paroles qui

nécessite une quantité de données d’entrâınement beaucoup plus faible que les méthodes de l’état

de l’art tout en o�rant des performances compétitives. En outre, nous constatons que l’exploitation

des phonèmes alignés peut améliorer la séparation de la voix chantée, mais un alignement précis

et des transcriptions exactes sont nécessaires. Les modifications du texte d’entrée entrâınent des

modifications du signal vocal séparé. Pour nos expériences, nous avons retranscrit les paroles du

corpus MUSDB et les avons rendues publiques à des fins de recherche.

Enfin, nous considérons un scénario où seuls des mélanges, mais aucun signal source isolé,

sont disponibles pour l’apprentissage. Nous proposons une nouvelle approche d’apprentissage pro-

fond non supervisé pour la séparation de sources musicales. Elle exploite les informations sur
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les fréquences fondamentales (F0) des sources qui peuvent être estimées à partir du mélange. La

méthode intègre des connaissances du domaine sous la forme de modèles de sources paramétriques

di�érentiables dans le réseau neuronal profond. L’évaluation expérimentale d’une séparation d’un

ensemble vocal montre que la méthode proposée surpasse les méthodes sans apprentissage in-

formées par F0 et basées sur la factorisation de matrices non négatives, ainsi qu’une approche

d’apprentissage profond supervisé informée par F0. En combinant des approches guidées par les

données avec des approches basées sur la connaissance, la méthode proposée est particulièrement

e�cace en terme de données et atteint une bonne qualité de séparation en utilisant moins de

trois minutes de données d’entrâınement. Elle rend la séparation de sources par apprentissage

profond exploitable dans les domaines où les données d’entrâınement étiquetées sont coûteuses ou

inexistantes.
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Chapter 1

Introduction

Most music recordings are mixtures of several sound sources such as musical instruments or human

voice. The signals of the individual instruments are usually not accessible in isolation. If the

instruments are recorded separately, the isolated signals exist but are usually not distributed. This

is often the case for popular music productions. For many other genres such as jazz, classical

music, or folk, it is common practice that the musicians perform together in the same room and

only the mixture of the instrument signals is recorded. In this case, no isolated recordings exist.

Furthermore, the individual instrument recordings of many old music productions are lost today.

However, having access to the separate instrument signals is necessary for many use cases of

music recordings. For example, one may wish to remove the singing voice from a song to obtain

a karaoke version. Some artists want to extract one instrument from a given mixture to remix it

with other recordings to build a new music piece. Play-along tracks can be created for musicians by

removing their instrument from a song they want to practice. A mixture has usually two channels

which is the standard in the consumer audio industry. One may wish to upmix a recording

for playback on systems with more channels and change the spatial location of an instrument.

Moreover, automatic analysis of recordings is facilitated through access to the individual sound

sources. Examples comprise the retrieval of the singer identity, the instrumentation or language of

a song, and the transcription of the lyrics or the musical score.

Recovering one or more sound sources from their mixture is referred to as audio source separa-

tion. This dissertation deals with musical source separation with a focus on estimating the singing

voice from a mixture.

1.1 Motivation and aim

The first successful approaches to musical source separation enabling some of the above mentioned

applications were knowledge-driven. The knowledge they exploited can be divided into model-based

knowledge and side information. Model-based knowledge comprises models of source properties

and the mixing process. Side information is additional data which contains information about one

or more sources. Under this knowledge-driven paradigm the term informed audio source separation

was coined [115, 201]. A sketch of the general workflow of knowledge-driven source separation is

shown in Figure 1.1. Note that not all approaches comprise all of the shown components. The

processing steps and possible parameter updates are performed for each mixture to be separated

individually. Prior knowledge is essential in one or more stages of the process.
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- Mixing process
- Source properties

Side information
- Musical score

- Fundamental frequencies
- Example signal

- Text

Mixture
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Figure 1.1: General procedure of knowledge-driven audio source separation.

In the last decade, great progress was made regarding the application of deep learning to a wide

variety of machine learning tasks. This was partly due to the availability of larger datasets and more

computational power. Deep learning has revolutionized fields such as computer vision [99], natural

language processing [216], and audio data analysis [60]. Using Deep Neural Networks (DNNs) for

audio source separation led to immense performance gains [78]. As a consequence, state-of-the-art

methods are data-driven today and rely on supervised learning. The general learning procedure of

such methods is presented in Figure 1.2. The main challenge of data-driven methods is the need

for large sets of high quality labeled data.

Learning
algorithm

Source
estimate

Labeled
data

Mixture True
sourceCost function 

Update

Figure 1.2: Supervised learning procedure of data-driven audio source separation.

One simple way to improve the performance of DNNs would be to use more high quality data

for training. In fact, it has been shown that training generic DNN architectures on extremely

large datasets can lead to state-of-the-art performance in music source separation [86] and other

tasks such as music transcription [67] and version identification [34]. However, access to such large

amounts of data is usually limited in the music domain. In general, music recordings are subject

to copyright restrictions which impedes their free distribution and usage as training data. This is

a challenge that all data-driven approaches in music informatics have in common.

Another challenge is the creation of task specific labels for supervised learning. This is par-

ticularly di�cult for music source separation because in this context labels or training targets

are isolated instrument or voice recordings corresponding to the available mixtures. Such targets

cannot be created manually as opposed to labels for other tasks. They have to be obtained from

the right holders along with the mixtures. As explained above, isolated instrument recordings are
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usually not distributed or may not even exist. Special recording sessions may be arranged in order

to record signals in isolation as for example done in [25] with a choir. However, this is not only

extremely costly but also leads to unnatural conditions for the musicians of certain music styles.

At the same time, complementary data such as musical scores or lyrics transcripts may be more

readily available. This kind of side information was exploited by many knowledge-driven source

separation methods but is usually ignored by data-driven methods. Furthermore, while separate

instrument signals are extremely di�cult to obtain, mixtures can be obtained much more easily.

Therefore, it would be useful to develop methods that can learn from only mixture signals or

exploit available side information in addition to labeled data.

The aim of this dissertation is to explore the usage of prior knowledge in data-driven approaches

to music source separation. To develop informed deep learning based methods, we take inspiration

from the knowledge-driven separation procedure. The underlying hypothesis is that this may lead

to less dependence on labeled data and more e�cient methods.

First, we focus on the usage of side information to complement data for supervised learning.

Specifically, it is investigated to which extent the separation of singing voice from the instrumental

accompaniment can be supported by lyrics transcripts as side information. Lyrics are widely

available and easier to obtain than audio data. Furthermore, they can be transcribed by users

without specific musical or technical expertise. Compared to musical scores they have received

little attention as side information.

One challenge is that text transcripts do not contain information about the temporal alignment

of the words or phonemes with a corresponding audio signal. Therefore, it is also investigated

which level of alignment between lyrics and a mixture signal is required to inform the separation.

Automatic lyrics alignment methods either do not provide reliable alignments at a fine scale or

su�er from very high data requirements [182, 64]. For these reasons, it is an additional goal of this

dissertation to lower the data needs of data-driven fine scale alignment approaches. Aligning text

with mixtures is more challenging than with solo singing recordings. Therefore, we explore if the

alignment and text-informed separation can be performed jointly and if this leads to benefits.

Lastly, a scenario is considered where no separate target source signals are available for training.

It is explored how prior knowledge can be exploited in order to learn source separation using only

mixture signals. The goal is to make data-driven source separation applicable for the wide range

of music genres where instruments are not recorded in isolation. The usage of side information

in the form of fundamental frequency (F0) trajectories and model-based knowledge in the form

of generative source models is investigated. Finally, we evaluate experimentally how such an

informed unsupervised learning approach performs compared to knowledge-based learning-free

methods using the same prior knowledge and supervised methods.

1.2 Structure of the dissertation

The document is divided into two parts. Part I contains an overview of relevant concepts and

methods as well as a review of previous work on musical source separation. In Part II the proposed

approaches are described, put in context of related work, and experimentally evaluated.

Part I: Background

• Chapter 2 – Technical background: This chapter provides a technical introduction to

audio source separation and a brief review of concepts and methods which are used in Part II.
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• Chapter 3 – Related work: This chapter provides a review of previous work on audio

source separation with a focus on music signals. It includes a discussion of the limitations of

recent approaches and the resulting research opportunities.

Part II: Contributions

• Chapter 4 – Weakly informed audio source separation: This chapter addresses the

problem of how to use non-aligned side information for supervised audio source separation

with deep learning. An experimental proof of concept of the proposed approach is provided

performing singing voice separation with synthetic side information. Finally, the method is

evaluated on text-informed speech-music separation and text-to-audio alignment.

• Chapter 5 – Text-informed singing voice separation and lyrics alignment: In this

chapter the method of the previous chapter is improved so that it can perform phoneme level

lyrics alignment and text-informed singing voice separation. Extensive experimental evalua-

tion is provided and the benefits and limitations of text as side information are discussed.

• Chapter 6 – Unsupervised audio source separation: In this chapter it is shown how

fundamental frequency information and generative source models can be used to enable deep

learning based source separation when only mixtures but no separate source signals are

available for training. The proposed method is evaluated on a vocal ensemble separation

task and compared to learning-free and supervised methods.

• Chapter 7 – Conclusion: This chapter concludes the thesis by summarizing the work,

discussing its limitations, and proposing possible directions for future work.

1.3 Contributions and publications

The overall contribution of this dissertation is to explore the integration of prior knowledge into

data-driven approaches to audio source separation. We follow the principles of open and repro-

ducible science and make all published articles as well as the code and data produced for this work

publicly available under permissive licenses as far as possible. The main contributions are detailed

below.

• Chapter 4: a novel DNN architecture for supervised informed audio source separation is

proposed. It can exploit side information which is not aligned with the mixture because

it performs separation and alignment jointly. We show that the alignment can be learned

using an attention mechanism as a side outcome of training the DNN with a separation

objective. Moreover, two new evaluation metrics for audio source separation are proposed.

They complement the standard metrics on frames with a silent target or estimated source.

The work described in this chapter led to the following publications:

– Kilian Schulze-Forster, Clement S. J. Doire, Gaël Richard, Roland Badeau

”Weakly Informed Audio Source Separation”. In Proceedings of the IEEE Workshop on

Applications of Signal Processing to Audio and Acoustics, 2019.

– Kilian Schulze-Forster, Clement S. J. Doire, Gaël Richard, Roland Badeau

”Joint Phoneme Alignment and Text-Informed Speech Separation on Highly Corrupted

Speech” In Proceedings of the IEEE International Conference on Acoustics, Speech, and

Signal Processing, 2020.
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• Chapter 5: the method introduced in Chapter 4 is further improved with a novel monotonic

attention mechanism. It incorporates the prior knowledge that text and audio sequences fol-

low a left-to-right temporal structure. This enables the model to perform phoneme level lyrics

alignment and text-informed singing voice separation. The result is a new lyrics alignment

method which works well on mixtures and is competitive with the state-of-the-art while using

less data for training. Moreover, new insights into text-informed singing voice separation are

provided. The musical source separation corpus MUSDB was extended by lyrics transcripts

and other annotations which are made publicly available for research purposes. The work

described in this chapter led to the following publication:

– Kilian Schulze-Forster, Clement S. J. Doire, Gaël Richard, Roland Badeau

”Phoneme Level Lyrics Alignment and Text-Informed Singing Voice Separation.”

IEEE/ACM Transactions on Audio, Speech and Language Processing, 2021.

• Chapter 6: a novel unsupervised deep learning approach for audio source separation is pro-

posed. It exploits side information in the form of F0 trajectories and model-based knowledge

in the form of parametric source-filter models. A new di�erentiable procedure to estimate

stable time-varying all-pole filters with a DNN is proposed in order to integrate the source-

filter models in the training pipeline. The proposed approach outperforms learning-free and

supervised baselines on vocal ensemble separation. It is also extremely data e�cient because

it does not only learn from unlabeled data but also from a small amount of such data. Fur-

thermore, it provides a parameterization of the mixture signal which can be exploited for

downstream tasks. The work described in this chapter led to the following paper:

– Kilian Schulze-Forster, Clement S. J. Doire, Gaël Richard, Roland Badeau

”Unsupervised audio source separation using di�erentiable parametric source models.”

Currently under review.
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Chapter 2

Technical Background

Summary

In this chapter we formally introduce the task of audio source separation. We also summarize the

key concepts which are the foundation of the domain knowledge and signal information which will

be integrated into data-driven source separation in this thesis. Finally, a basic introduction to

deep neural networks is given.

Contents

2.1 Introduction to audio source separation . . . . . . . . . . . . . . . . . 9

2.1.1 Time-frequency masking . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Human voice production . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Phonemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Fundamental frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Line Spectral Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Deep neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Fully connected layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Convolutional neural networks . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.5 Attention mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.6 Training deep neural networks . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Introduction to audio source separation

Let us assume we observe an audio signal x(t) which is a mixture of J sound source signals. The

goal of audio source separation is to estimate the individual signal of one or more of those sources.

For a comprehensive overview of audio source separation we refer the reader to [203]. In the

following, a brief introduction is given based on this reference.
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Several scenarios as to how the sound sources are recorded and how the mixture signal is created

can be di�erentiated. In general, the mixing process can be described in two steps. First, each

source signal sj(t) is transformed into a source spatial image signal vj(t) with a filter aj(t):

vj(t) = aj(t) ú sj(t). (2.1)

The impulse response aj(t) may describe the acoustic e�ect of the room in which the source is

recorded or artificial sound e�ects. In the notation above we consider all signals to have one

channel. However, a mixture signal with I channels may be obtained by using I ◊ J di�erent

filters which may represent several microphone positions or artificial spatialization e�ects. As a

second step, the mixture is created by the sum

x(t) =
Jÿ

j=1

vj(t). (2.2)

The sources can be recorded simultaneously with the same microphone(s) or separately and then

mixed artificially. Both cases may be described by the sum above. The mixture x(t) might

be processed further. For example, in music production it is common to apply dynamic range

compression or a reverberation filter. Such e�ects are not considered in most source separation

approaches including those proposed in this thesis.

The mixture is said to be overdetermined (or determined) if there are no spatially di�use sources

and the number of sources is smaller than (or equal to) the number of channels. Otherwise, it is

underdetermined.

In the context of music and speech signals, we usually face underdetermined mixtures. In

several applications of musical source separation it is the goal to obtain the source spatial image

signals vj(t) which include reverberation and other audio e�ects. However, the clean source sig-

nals sj(t) are required to change the source location. In speech processing one is usually interested

in the clean source signals, for example to use them as input to automatic speech recognition

systems. For this more comprehensive enhancement problem also dereverberation and echo can-

cellation might be applied. In the multi-channel case, if the sources are recorded with spatially

distributed microphones, one can exploit the spatial information for the separation. However, in

this dissertation we focus on the single-channel case where this is not possible.

2.1.1 Time-frequency masking

A common approach to single-channel audio source separation is to apply a time-varying filter in

the time-frequency domain. To this end, complex-valued time-frequency coe�cients x(f, n) are

computed by a Short Time Fourier Transform (STFT) of the mixture. The frequency bins are

indexed by f and the time frames are indexed by n. Complex variables are denoted with an

underline. Then, a typically (but not necessarily) real-valued filter wj(f, n) is applied to obtain an

estimate of the target source coe�cient v̂j(f, n):

v̂j(f, n) = wj(f, n)x(f, n). (2.3)

The filter w(f, n) is called a binary mask, if it takes only the values zero and one, and a soft mask

if it takes values in the interval [0, 1].
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There are many approaches to obtain such masks with di�erent properties. One widely applied

way is to estimate the magnitudes of the sources in the time-frequency domain and to construct

the filter as

wj(f, n) =
p̂j(f, n)α

q

jÕ p̂jÕ(f, n)α
(2.4)

where pj(f, n) = |vj(f, n)| and the hat indicates an estimate [114]. When – = 2, the mask wj(f, n)

is called a single-channel Wiener filter which is the minimum mean square error estimator under

the assumption that the source signals are uncorrelated locally stationary Gaussian processes with

zero mean [203]. However, this assumption does not hold for all audio sources and – = 1 is

preferred for music signals. This is theoretically justified under the assumption that the signals

are locally stationary stable harmonizable processes [114]. Estimates of all sources are required to

build such a mask. When only an estimate of one target source magnitude is available it is simply

combined with the mixture phase to obtain the corresponding complex-valued source estimate.

2.1.2 Evaluation

Di�erent objective evaluation metrics for audio source separation exist. The most widely used

metrics have been proposed by Vincent et al. [202]. They decompose a source estimate ŝj as

ŝj = starget + einterf + enoise + eartif , with the target source term starget = f(sj) being a function

of the true source ( or source image). The function f may be a time-variant or constant scaling

term or allowed distortion filter. The terms einterf , enoise, and eartif describe interferences from

other sources, noise, and algorithmic artifacts, respectively. The proposed evaluation metrics are

Source-to-Distortion Ratio (SDR), Source-to-Interference Ratio (SIR), Source-to-Noise Ratio, and

Source-to-Artifacts Ratio (SAR) which are energy ratios of the target source and the error terms.

Whereas the SIR, Source-to-Noise Ratio, and SAR focus on specific error types, the SDR computes

the general error and is defined as

SDR = 10 log10

ÎstargetÎ
2

Îeinterf + enoise + eartif Î2
= 10 log10

Îf(sj)Î2

Îf(sj) ≠ ŝjÎ2
. (2.5)

It has recently been argued that f as a filter is too permissive and that it should only scale the true

source (image) to make the metric invariant to the scale of the estimate [106]. For this case the

metric has been called explicitly scale-invariant SDR (SI-SDR) [106]. For music signals it became

common practice to compute the metrics on one second long non-overlapping frames to take the

strongly time-varying nature of such signals into account [185].

Moreover, there are some metrics designed to measure the quality of speech signals. The Percep-

tual Evaluation of Speech Quality (PESQ) [156] evaluates the overall error with a psychoacoustic

model and the Short-Time Objective Intelligibility score (STOI) [189] measures intelligibility and

was shown to be correlated with intelligibility assessed by humans in listening tests [189, 73].

2.2 Key concepts

2.2.1 Human voice production

Since we are concerned with singing voice and speech signals in this thesis, it is useful to understand

the basics of the human voice production mechanism and the resulting properties of voice signals.

A comprehensive treatment of the topic can be found in [48] and [51].
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A voiced sound such as a vowel is produced as follows. Air flows from the lungs via the trachea

through the tensed vocal chords which vibrate as a result. The vocal chords open and close rapidly

due to their vibration and transform the airflow into quasi-periodic pulses which form sound waves.

The pulses then propagate through the vocal tract which consists of the throat cavity, oral cavity,

and nasal cavity. Finally, sound waves are radiated from the mouth and nose. The position of

the jaw, tongue, velum, and lips (articulators) determines the shape of the vocal tract and thus

its resonance frequencies also called formants. The formant frequencies shape the spectral envelop

of the produced sound which thus varies over time with the vocal tract shape. When the vocal

chords are not tensed, the air flow enters the vocal tract unaltered. There, it may hit a partial

constriction, which results in turbulent air flow producing an unvoiced sound (e.g. the first sound

of the word ”sing”). Otherwise, it may hit a total constriction, pressure builds up and a transient

sound is produced when it is released (e.g. the first sound of the word ”put”). The properties of

such sounds are also determined by the articulators [149].

Although this description is simplified, we can conclude that a voice signal is a sequence of

time-varying sounds which may be periodic, noise-like, or transient [149]. The primary goal of a

speech signal is to encode an implicit message that should be transmitted. In contrast, singing

voice signals also intend to convey artistic expression and melodies so that intelligibility is not

always the main priority.

Source-filter model of human voice production

The source-filter model is based on the observation that a voice sound wave is essentially a signal

from a sound source – vibrating vocal chords or turbulent air flow – which is modified by a filter, the

vocal tract. Expressed in the language of signal processing, a voice signal s(t) can thus be modeled

as the response of a time-varying filter h(t) to an excitation signal e(t) which is quasi-periodic for

voiced sounds and white noise for unvoiced sounds [48]:

s(t) = e(t) ú h(t). (2.6)

Linear predictive coding models speech signals as autoregressive processes which suggests that

the vocal tract filter is an all-pole filter [120]. The transfer function of the filter can be written in

the z-domain as

H(z) =
G

A(z)
=

G

1 ≠
qK

k=1 akz≠k
(2.7)

where G is a gain parameter, ak are the filter coe�cients, and K is the filter order.

The source-filter model greatly simplifies the human voice production process. Nevertheless, it

is the foundation of many speech [149, 154] and singing voice synthesis methods [10, 133, 29]. It

may also be used to model musical instruments [40, 68].

2.2.2 Phonemes

The concept of phonemes originated in linguistics. Although the exact definition is a subject of

debate in this field, a commonly applied definition is the following. A phoneme is a minimal

distinctive unit of a word. This means that the replacement of one phoneme by another leads to

a new word with a new meaning. For example, we can take the word ’bin’ and replace the first

phoneme /B/ by a /P/ and obtain the new word ’pin’ [32]. It results from this definition that
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phonemes are the smallest distinctive sound units of a language. In the context of audio processing,

we are interested in the distinct spectral properties of phonemes.

There are di�erent notation systems for phonemes including the International Phonetic Al-

phabet (IPA) [4] and the ARPAbet representation proposed by the Advanced Research Projects

Agency (ARPA) as a more computer-friendly alternative [95]. In Table 2.1, a condensed list of 39

phonemes of American English is shown in 2-characters ARPAbet notation along with an example

word and their phonetic class. Since each phoneme has distinct spectral characteristics, a phonetic

transcription provides a link between written words and the corresponding speech signal. To be

precise, a phoneme contains the information whether the corresponding sound is predominantly

periodic (voiced phoneme) or noise-like (unvoiced phoneme), and information about the overall

spectral shape since each phoneme is produced by a distinct vocal tract configuration. It does not

contain information about the fundamental frequency of voiced sounds (cf. Section 2.2.3).

It is important to note that phonetic transcriptions derived from orthographic transcripts fol-

low an idealized pronunciation rule. Nevertheless, there are several ways to pronounce a word

and the actual acoustic realization heavily depends on the speaking person. Moreover, the exact

pronunciation of a phoneme may di�er depending on the preceding and following phoneme, an

e�ect called co-articulation [149].

In this thesis, we will use phonetic transcripts as a source of information about the expected

spectral properties of a corresponding voice signal which should be separated from other sound

sources.

Phoneme Example Class
IY beet

vowels

IH bit
EH bet
AE bat
AA Bob
AH but
AO bought
OW boat
UH book
UW boot
ER bird
EY bait

diphthongs
AW down
AY buy
OY boy

Y you

semivowels
W wit
R rent
L let

Phoneme Example Class
M met

nasalsN net
NG sing

P pat
unvoiced stopsT ten

K kit
B bet

voiced stopsD debt
G get

HH hat whisper
F fat

unvoiced fricatives
TH thing
S sat

SH shut
V vat

voiced fricatives
DH that
Z zoo

ZH azure
CH church

a�ricates
JH judge

Table 2.1: Set of 39 phonemes for American English in 2-character ARPAbet notation. The
example words are found in [149].

2.2.3 Fundamental frequency

Certain sounds are composed of several sinusoidal components with di�erent frequencies. These

sinusoids are called partials. The frequency of the lowest partial is the fundamental frequency. The
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other partials are called harmonics if their frequencies are integer multiples of the fundamental

frequency. The fundamental frequency is also referred to as F0 because it can be seen as the zeroth

harmonic.

Voiced sounds in speech and singing voice as well as sounds from musical instruments consist

usually of F0 and a number of harmonics which are not always perfectly but roughly integer

multiples of F0. The term pitch refers to the perceived tone when listening to a sound. It is thus

a subjective descriptor. In the context of music signals, the pitch is usually determined by the

fundamental frequency [134].

2.2.4 Line Spectral Frequencies

Line Spectral Frequencies (LSF) were introduced in [83] as an alternative representation of linear

prediction coe�cients and have been widely used in speech coding. They provide a convenient

and to some degree interpretable parameterization of stable all-pole filters. They also allow the

formulation of constraints to control the filter response as well as stable quantization and interpo-

lation [21]. They will be used in Chapter 6 to parameterize vocal tract filters. In the following, a

brief introduction of LSFs is given. Comprehensive overviews can be found in [21, 180, 88].

The polynomial A(z) = 1 ≠
qK

k=1 akz≠k, which is found in the denominator of the vocal tract

filter in (2.7), can be decomposed into the polynomials P (z) and Q(z) which are symmetric and

antisymmetric, respectively, and have the order K + 1:

A(z) =
P (z) + Q(z)

2
. (2.8)

It can be shown that if the roots of P (z) and Q(z) alternate on the unit circle, the corresponding

filter 1
A(z) is stable and minimum-phase [180]. The unit circle in the z-plane is described by z = e≠jω

where Ê is the phase angle in radiants. Hence, Ê describes the location of the roots. If K is even,

P (z) has a root at z = ≠1 and Q(z) has a root at z = +1. The remaining roots occur in complex

conjugate pairs. Therefore, it is su�cient to consider only the roots on the upper semicircle. The

angles Êk defining the locations of these complex roots are called LSFs. Two to three LSFs tend to

be close together when a filter pole is close to the unit circle in their proximity which corresponds

to a peak in the frequency response. Hence LSFs have a frequency domain interpretation. If K

is even, P (z) and Q(z) have K/2 complex roots on the upper unit semicircle each, for which the

following relation holds:

0 < Êk < Êk+1 < fi. (2.9)

When k is odd, Êk defines a root of P (z); when k is even, it defines a root of Q(z) for k œ {1, ..., K}.

If K is odd, Q(z) has two real roots (at z = +1 and z = ≠1) and (K ≠ 1)/2 pairs of complex

conjugate zeros. P (z) has (K + 1)/2 pairs of complex conjugate zeros in this case and (2.9) still

holds. To sum up, a stable minimum-phase filter 1
A(z) of order K is defined by K LSFs fulfilling

the relation in (2.9).

LSFs can be converted to the filter coe�cients ak using Algorithm 1 [88, 124]1.

1The formulation of Algorithm 1 which is presented here was presented in [124]. Some equations in the main
body of [124] contain errors but the Matlab code in the Appendix is correct. A less general formulation is found in
[21, Ch. 8]. The conversion was formally introduced in [88].
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Algorithm 1 Compute filter coe�cients ak from LSFs Êk [88, 124]

Input: (Êk)k=1:K

Define: xk = cos(Êk)
Initialize: pÕ

≠1 = qÕ
≠1 = 0; pÕ

0 = qÕ
0 = 1

Initialize: pÕ
1 = ≠2x1; qÕ

1 = ≠2x2

for k = 2 to K/2 do
pÕ

k = ≠2pÕ
k≠1x2k≠1 + 2pÕ

k≠2

qÕ
k = ≠2qÕ

k≠1x2k + 2qÕ
k≠2

for i = (k ≠ 1) to 1 do
pÕ

i = pÕ
i ≠ 2pÕ

i≠1x2k≠1 + pÕ
i≠2

qÕ
i = qÕ

i ≠ 2qÕ
i≠1x2k + qÕ

i≠2

end for
end for
for k = 1 to K/2 do

pk = pÕ
k + pÕ

k≠1

qk = qÕ
k ≠ qÕ

k≠1

end for
for k = 1 to K/2 do

ak = (pk + qk)/2
a(K/2+k) = (p(K/2≠k+1) ≠ q(K/2≠k+1))/2

end for
Output: (ak)k=1:K

2.3 Deep neural networks

Deep neural networks (DNN) are powerful models for supervised machine learning. In the last

decade, they have set new standards in multiple domains such as computer vision [99], natural

language processing [216], and also audio processing [60].

Nevertheless, it is important to note that they have some drawbacks. Perhaps the biggest one

is that they require large amounts of labeled data for supervised learning. This is a challenge

in domains such as music where copyright issues arise and manual annotations in large amounts

are extremely costly to produce. This aspect motivates the work presented in this dissertation.

Furthermore, their internal representations are di�cult to interpret and the outputs are hard to

explain [214]. In fact, their vulnerability to adversarial attacks [3] suggests that they may rely

on spurious patterns in the training data which are not relevant for the task at hand. Like most

machine learning techniques, they do not learn causal relationships [164]. Lastly, the development,

training, and deployment of DNNs require massive computational resources which leads to a large

carbon footprint [187, 170].

The task of a DNN is to approximate a function fú(X) = Y mapping from some input data

X to some target data Y. A DNN defines a function fθ(X) = Ŷ with parameters ◊ which are

optimized to obtain the best estimate Ŷ. The function fθ = f (L) ¶ ... ¶ f (2) ¶ f (1) is composed of L

di�erent functions which are also referred to as layers. f (1) is called input layer, f (L) is the output

layer, and the other functions are called hidden layers. The output of one layer serves as input

to the subsequent layer. In the following, we introduce the most important layer types and deep

learning concepts which are used in this dissertation. More comprehensive overviews are available

in [57] regarding deep learning in general, and in [148] regarding its application to audio data.
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2.3.1 Fully connected layer

A fully connected layer is the simplest building block of a DNN. It computes the output y œ R
Dout

from an input x œ R
Din as

y = g(Wx + b) (2.10)

where W œ R
Dout◊Din is a weight matrix, b œ R

Dout is a bias vector, and g is an entry-wise

non-linear activation function. Such a layer may also be called dense layer. Multiple dense layers

composed together are referred to as Multi-Layer Perceptron (MLP) [57].

2.3.2 Recurrent neural networks

Recurrent Neural Networks (RNN) [158] are designed to process sequential data. Hence, the input

and output are sequences of N vectors X = [x1, x2, ..., xN ] and Y = [y1, y2, ..., yN ], respectively.

A simple RNN is defined by the function

yn = g(Wy(n≠1) + Uxn + b) (2.11)

where U œ R
Dout◊Din is a weight matrix. The same parameters are used across the entire input

sequence and (2.11) has a causal structure. The vector yn is also referred to as hidden state because,

besides being an output of the recurrent layer at step n, it is also an input to the computation at

step n + 1.

In many cases, it may be beneficial to make the output depend on the whole input sequence and

not only on past observations. This can be done using a bidirectional RNN [169] which consists

of one RNN as in (2.11) and another RNN processing the input sequence in reverse order. Their

outputs are then concatenated before being processed by the next layer.

In practice, RNNs are not applied in the simple form of (2.11) because they su�er from vanishing

and exploding gradients due to the recurrent dependencies [74, 8]. Gated RNNs such as Long Short-

Term Memory (LSTM) cells [75, 55] and the Gated Recurrent Unit (GRU) [19] solve this problem

by introducing mechanisms to reset the internal memory of past (or future) observations. They

are also used in this thesis.

Figure 2.1: Long Short-Term Memory (LSTM) cell.
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An LSTM layer is defined by the following set of equations:

c̃n = tanh(Wcy(n≠1) + Ucxn + bc), (2.12a)

gu = ‡(Wuy(n≠1) + Uuxn + bu), (2.12b)

gf = ‡(Wf y(n≠1) + Uf xn + bf ), (2.12c)

go = ‡(Woy(n≠1) + Ugxn + bo), (2.12d)

cn = gu ¶ c̃n + gf ¶ c(n≠1), (2.12e)

yn = go ¶ tanh(cn), (2.12f)

where ¶ denotes the element-wise product and ‡ is the Sigmoid activation function (cf. Section

2.3.4). Wc, Wu, Wf , Wo œ R
Dout◊Dout and Uc, Uu, Uf , Uo œ R

Dout◊Din are weight matrices,

bc, bu, bf , bo œ R
Dout are bias vectors, xn œ R

Din is the input vector and yn œ R
Dout is the

output. cn represents the internal memory and gu, gf , go œ]0, 1[Dout are called update gate, forget

gate, and output gate, respectively. A diagram of an LSTM cell is shown in Figure 2.1. A GRU is a

simplified LSTM cell which does not have an output gate and is computationally more e�cient [19].

The performance of LSTMs and GRUs was found to be on par for sequence modeling tasks [22].

2.3.3 Convolutional neural networks

Convolutional Neural Networks (CNN) [107] are designed to process data with a grid-like structure

such as regularly sampled time series (1-D grid), images (2-D grid), or videos (3-D grid) [57]. The

input of a convolutional layer is convolved with kernels whose entries are learnable parameters.

This means that a kernel is slid across the input and at each position its values are multiplied with

the overlapping input values. The sum of the results is the corresponding output value. This way

local patterns can be recognized independently of their location in the input representation.

While the approaches proposed in this thesis are based on RNNs, CNNs are also widely used in

audio processing and audio source separation. Waveforms are processed with 1-D convolutions and

time-frequency representations are processed with the 2-D version. A comprehensive introduction

to CNNs can be found in [37] and [57].

2.3.4 Activation functions

DNNs are employed to approximate highly non-linear mappings. Therefore, non-linear functions g

are applied element-wise to the outputs of the a�ne transformations defined by the layers intro-

duced above. These functions are called activation functions. Popular activation functions are the

hyperbolic tangent tanh(), the Sigmoid or logistic function ‡() defined as

‡(x) =
1

1 ≠ e≠x
, (2.13)

and the Rectified Linear Unit (ReLU) [119] defined as

ReLU(x) = max(0, x). (2.14)

It is di�cult to say with certainty which activation function is the best choice for a certain DNN or

data. However, it should be noted that they have di�erent derivatives and thus behave di�erently
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in gradient-based optimization. Moreover, they determine the interval in which the output values

lie. This is especially relevant for the output layer of a DNN because its output values must be

able to cover the value range of the target data.

2.3.5 Attention mechanism

The attention mechanism has been introduced by Bahdanau et al. [6] for neural machine translation

with recurrent encoder-decoder models. It enables sequence-to-sequence models to evaluate the

relevance of each element in one sequence with respect to the elements of another sequence by

means of a learned scoring scheme. In the context of machine translation, it provides an e�cient

way to deal with the fact that di�erent languages have di�erent sentence structures. Consider for

example the English-French sentence pair ”The agreement on the European Economic Area was

signed in 1992” and ”L’accord sur la zone économique européenne a été signé en 1992”. While the

first few words can be translated word by word from left to right, the phrase ”European Economic

Area” is reversed in French.

Figure 2.2: Recurrent encoder-decoder model with attention mechanism.

A basic recurrent encoder-decoder model with attention is shown in Figure 2.2. The output yn

(e.g. a French word) is computed based on the hidden state of the decoder dn = f(dn≠1, yn≠1, cn)

which is a function of the previous hidden state dn≠1, the previous output yn≠1, and a context

vector cn. The context vector summarizes the hidden representation [h1, h2, ..., hM ] of the input

sequence (e.g. an English sentence). It is computed as

cn =
Mÿ

m=1

–m,nhm. (2.15)

The attention weights –m,n are computed as

–m,n =
esm,n

qM
k=1 esk,n

(2.16)
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where sm,n = a(dn≠1, hm) is a score computed with a scoring mechanism a. In [6] a fully connected

layer was used as scoring mechanism but alternatives have been proposed in [118]. Equation (2.16)

is a softmax operation which ensures that all M attention weights sum up to one. The attention

weights constitute a soft alignment between the input and output sequence.

Attention became a widely adopted concept and has shown to be useful in a wide range of tasks

and DNN architectures [15]. Beyond that, a neural network architecture called Transformer was

introduced which processes data only with attention mechanisms instead of using RNN or CNN

layers [199].

2.3.6 Training deep neural networks

Training a DNN essentially means to adjust its parameters ◊ so that it returns high quality es-

timates Ŷ. A loss function L(◊) is defined which measures the di�erence between the network

output Ŷ and the ground truth Y for given ◊. The loss is minimized with a variant of gradient

descent using a set of training examples by updating the parameters as follows:

◊ Ω ◊ ≠ –ÒθL(◊) (2.17)

where – is the learning rate. In practice, the gradient is not computed for the entire training

set due to high computational costs. Instead, batches of examples are sampled from the training

set and the updates are done using gradients computed on the batches. This is called stochastic

gradient descent [57]. In this thesis, we use the Adam optimization algorithm [90], which is an

improved version of stochastic gradient descent and the most widely used algorithm in applied

deep learning today. It keeps an average of past gradients to determine the direction of the next

update – a concept known as momentum – and adapts the learning rate for each model parameter.

These improvements accelerate convergence and lower the dependence on the learning rate which

is a hyperparameter that is usually di�cult to set [57].

A validation set is usually used to tune hyperparameters and to decide when training is stopped

to avoid overfitting on the training data. Training DNNs often involves heuristics and finding

an optimal solution is not guaranteed in most applications. However, DNNs solve many tasks

exceedingly well despite a lack of theoretical guarantees [57]. In this thesis, deep learning is

applied as a method to solve tasks in the audio domain. Hence, the work is more of experimental

than of theoretical nature.
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Related Work

Summary

In this chapter we give a broad overview of work on audio source separation with a focus on music

signals. We review knowledge-driven and data-driven approaches and discuss their strengths and

limitations to motivate the work in this dissertation. Publications which are directly related to a

chapter of this thesis are reviewed in the respective chapter.

Contents

3.1 Knowledge-driven audio source separation . . . . . . . . . . . . . . . 21

3.1.1 Model-based knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Side information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Data-driven audio source separation . . . . . . . . . . . . . . . . . . . 24

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

In general, source separation can be seen as a linear system identification and inversion problem.

However, in the audio domain this perspective is too limited because the sources may be spatially

di�use, the observed mixtures are usually underdetermined, and separation up to an unknown

permutation is not su�cient [201]. Two paradigms for audio source separation have emerged in the

last decades which are knowledge-driven and data-driven [152]. They are reviewed in Sections 3.1

and 3.2 respectively, followed by a discussion in Section 3.3.

3.1 Knowledge-driven audio source separation

A strictly blind source separation scenario where absolutely nothing is known about the mixing

process or the sources is not applicable in the audio domain. Therefore, information or assumptions

are always integrated to some degree in the separation methods for audio signals [203]. Such

information may have di�erent levels of detail ranging from rather general model-based knowledge,

concerning for example source properties or the mixing process, to side information being specific

to an observed mixture or source signal. In Figure 1.1 (Page 2), an overview of the general workflow

of knowledge-driven source separation was presented. Reviews of such methods can be found in

[115] and [201].
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3.1.1 Model-based knowledge

Some general assumptions are usually made about the sound sources or the mixing process. For

example, the Wiener filter makes assumptions about the sources’ probability distribution as ex-

plained in Section 2.1.1. However, exploiting more specific knowledge further improves or actually

enables the separation of audio sources.

Some e�orts have been made to exploit information about the spatial properties of the recording

setup [201]. Knowledge about the source location can be used in combination with beamforming if

the distance between the source and the microphone is known. If also the distance between micro-

phones is known, one can additionally account for the spatial width of the source with a full-rank

spatial covariance matrix [38]. Approaches to explicitly model the reverberation were proposed

using knowledge about the reverberation time or even room impulse response measurements [201].

The spatial information improves the separation quality, but such approaches are limited to sce-

narios where detailed information about the recording setup is available. This may be applicable

in telephone conferencing systems but excludes most musical mixtures.

A popular approach to model music and speech sources in the time-frequency domain is to de-

scribe them as a linear combination of spectral basis vectors which have a varying activity over time.

Nonnegative Matrix Factorisation (NMF) [108] approximates magnitude or power spectrograms

as a matrix product of two low-rank matrices containing spectral templates and their activations,

respectively [203]. NMF and its probabilistic counterparts [49, 135] have been used extensively

for audio source separation and denoising. For these tasks they exploit knowledge about spectral

properties of the sources.

For example, the fact that transient sounds result in vertical lines and tonal components in

horizontal lines in otherwise sparse time-frequency representations was included in various sepa-

ration approaches via sparsity constraints [98] and temporal continuity constraints [205, 49]. This

knowledge was also exploited in a non-parametric approach to separating percussive from harmonic

sounds [50]: Median filters are applied along the time and frequency dimension of a magnitude

spectrogram of a mixture to separate vertical and horizontal lines. Also the knowledge that only

one phoneme is active at once in speech or a few tones in music was used through sparsity con-

straints on the activations of spectral templates [201, 205, 7].

However, further information is required in order to achieve separation with methods based

on spectral basis vectors. When the basis spectra and its activations are estimated based on the

observed mixture to be separated, the spectral templates need to be assigned to the sound sources.

Unsupervised clustering and supervised classification algorithms were proposed to assign spectral

templates to sources [200]. They integrate knowledge through the manual selection of features for

clustering and isolated source signals as training examples for classification. These approaches had

limited success, though [205].

An alternative is to learn the basis spectra beforehand from appropriate clean source recordings

[7, 135, 92, 102]. This step itself is in fact data-driven. Nevertheless, restricting the templates to the

learned ones during the separation is knowledge-driven: it requires knowledge about the source

types in the mixture and the templates carry information about the spectral source properties.

It was also proposed to cluster the spectral components jointly with the mixture decomposition

through explicit modeling of the mixing process [140].

The spectrum of most musical sources can be assumed to have a harmonic structure. This was

accounted for by imposing a harmonic structure on spectral templates [36, 70, 40]. In [70], the
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amplitude of the harmonics is controlled through specific parameters whereas in [40] a source-filter

model is formulated for the target source within an NMF framework. However, singing voice also

contains unvoiced sounds without harmonic structure. This was taken into account in [84] by

learning templates for noise-like sounds and including them in the separation for frames where

no voice pitch was detected. Finally, a general NMF framework for audio source separation was

developed [143] which allows to flexibly integrate various kinds of prior knowledge and generalizes

most approaches to use model-based knowledge.

Robust Principal Component Analysis (RPCA) also showed promising results for singing voice

separation [77, 215]. Like NMF, it assumes that the accompaniment has a low-rank structure.

Unlike NMF, it assumes that the voice signal is sparse and does not have a low rank. In [215],

improvements were achieved by imposing harmonicity priors on the accompaniment model.

A non-parametric method to separate singing voice from the instrumental accompaniment

exploits the observation that the accompaniment often consists of patterns that are repeated many

times while the vocals are not repeated as much [153].

To conclude, the use of model-based knowledge has enabled and improved audio source sepa-

ration in various ways. The more specific the exploited information is, the higher is the potential

for increased separation quality as long as the underlying assumptions are valid. However, when

assumptions do not hold the separation quality is negatively impacted.

3.1.2 Side information

Side information is an additional input to the separation system and contains specific information

about one or more source signals comprised in the mixture to be separated. Examples of side

information are musical scores, F0 trajectories, voice activity information, and example signals.

Musical scores contain information about the number and types of instruments, the required

spectral templates to model the sources and their activations. This is valuable information for

NMF based source separation [46]. Scores were used to initialize the spectral templates, enforcing

harmonic structure corresponding to the played notes, and the activation matrix which leads to

improved decompositions [45, 70]. Moreover, they contain the information required to assign

templates and their activations to the sources for the actual separation so that no pre-trained

bases, clustering, or classification is required. However, in order to exploit scores in such a way it

is required that they are aligned with the mixture. In [175] it is proposed to use information from

non aligned scores by modelling simultaneously occurring notes as common factors between score

and audio in a tensor factorization framework.

F0 trajectories were used in a similar way to guide source separation with NMF [206, 40] and

RPCA [82]. Usually, F0 is estimated from the mixture and, hence, no alignment problem arises.

Improvements on singing voice separation with RPCA were achieved by exploiting vocal activity

information which can also be obtained from the mixture [144]. Specifically, it was observed that

the optimal hyperparameter setting for the RPCA optimization algorithm is di�erent for segments

with and without vocals. Choosing an appropriate value based on vocal activity information makes

the approach more adaptive and increases performance.

Another type of side information which was used for source separation is an example audio

signal which is related to the target source. Such audio signals can be isolated sources from a

cover version of the mixture to be separated [54] or a signal recorded by the user imitating the

target source [176, 69]. Moreover, speech signals were synthesized from text transcripts and their
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similarity to the target source was exploited for speech music separation [105]. For the case when

isolated sources are available at an encoding stage and should be estimated from their mixture at

a decoding stage, similarities and synergies between informed source separation and source coding

have been established [141].

In general, signal information can greatly improve the separation. However, it is required that

the side information accurately describes the corresponding audio signals and is temporally aligned.

Errors in the side information or its alignment lead to decreased separation quality.

3.2 Data-driven audio source separation

Data-driven methods learn spectral templates or the separation task on data and can thus avoid

making strong assumptions which are a weakness of knowledge-driven methods. As mentioned

above, spectral bases were learned from clean source recordings for separation with NMF and

similar methods which are mainly knowledge-driven [142, 177]. With the availability of more

computation power and data, deep learning based separation approaches emerged. They pro-

vide state-of-the-art performance for music and speech source separation and denoising in many

scenarios today [152, 207].

A sketch of the typical supervised learning procedure was shown in Figure 1.2 (Page 2). DNNs

are usually trained to map from a representation of the mixture signal to a representation of one or

more sources or spectral masks. This does not require much prior knowledge apart from crafting

the input features. However, the approach requires large datasets of mixture signals for which

the corresponding source signals are available in isolation. The separation performance strongly

depends on the quality and quantity of the training data and on how representative the data are for

unseen test mixtures. In the speech domain, hundreds of hours of audio data are publicly available

[24]. For musical source separation, public datasets are much smaller due to copyright restrictions

and the fact that isolated instrument recordings are usually not distributed or do not exist.

For example, the largest public dataset for music source separation is MUSDB [151]. It com-

prises about 10 hours of mainly western music such as rock, pop, and hip hop. Next to the

mixtures, it contains isolated recordings of the vocals, bass, drums, and a mixture of all remaining

instruments. Data for other music styles or instruments are scarcer.

Most studies focused on separating the singing voice from the instrumental accompaniment and

estimate magnitude spectrograms or masks for the target source from a mixture spectrogram as

an input. However, the question of which source can be estimated depends mainly on the available

training data and not as much on the DNN architecture. In fact, in the first works on DNN-based

music source separation the task was solved with networks comprising mainly RNNs [78], only

fully connected layers [196], or CNNs [14].

Subsequent work explored ways to improve upon those first promising results using DNNs.

Better performance was obtained through more advanced network architectures [86, 190, 191],

more data [86, 71], data augmentation strategies [197, 23] and combining several DNNs or their

predictions [186, 197]. It was also proposed to incorporate phase information by processing and

predicting complex spectrograms [219, 109]. An influential work applied the U-Net architecture

[157], which was originally developed for medical image processing, to singing voice separation using

a large proprietary dataset [86]. The work showed that very good separation results can be obtained

by training a generic DNN on large databases. The U-Net is a CNN consisting of an encoder and

a decoder. The encoder takes a magnitude spectrogram as input and processes it with several
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two-dimensional convolutional layers. Each layer downsamples the dimensions corresponding to

time and frequency and increases the number of channels along the third dimension. The decoder

consists of transposed convolutional layers [37] which upsample the time and frequency dimension

and decrease the number of channels until the input spectrogram size is reached again. The output

of each encoder layer is concatenated with the corresponding representation in the decoder having

the same size. This facilitates the gradient-based optimisation and assures that no high resolution

information has to be encoded in layers with lower resolution. This multi-scale processing was

shown to be very e�ective for source separation and other audio processing tasks.

Another line of research developed DNNs which process the mixture and predict the sources

directly in the time domain. This end-to-end approach has the theoretical advantages that phase

information is not neglected and no decisions concerning hand-crafted input features need to be

taken. The latter aspect makes such approaches even more data-driven. First, the U-Net was

adapted to time domain processing by replacing 2D with 1D convolutional layers [184]. Another

approach was based on the time domain speech synthesis network Wavenet [116, 139]. However,

both models did not perform better than their counterparts in the time-frequency domain [184, 116].

The architecture of [184] was then improved in [28] by including LSTM layers and increasing the

stride and number of channels in convolutional layers. This improved the separation performance

but also greatly increased the number of parameters making the model computationally expensive.

End-to-end models were also proposed for speech separation and surpassed separation performance

of oracle time-frequency masks [117]. Such a result remains to be shown for music signals. This

may be due to the fact that end-to-end models require amounts of training data which are not

widely available for music.

Usually, one instance of a DNN is trained to separate exclusively one specific target instru-

ment from a mixture. Two works have shown independently that this is an ine�cient use of the

network’s capacity [126, 161]. They separated several di�erent instruments with one DNN which

was extended by a control mechanism to select the desired target source with a one-hot vector as

input. The separation quality was on par with instrument-specific networks.

To sum up, data-driven deep learning approaches have the potential to provide better sep-

aration quality than knowledge-driven methods under the condition that enough computational

resources and data are available. The latter is not always given in the music domain. The in-

creased performance comes at the cost of higher resource demands and a lack of interpretability of

the model parameters.

3.3 Discussion

We have seen that both knowledge-driven and data-driven methods come with their own strengths

and limitations. Knowledge-driven approaches are based on precise algebraic problem formulations

or signal models and, hence, their behaviour is often straightforward to analyze. They are often

computationally relatively light and do not depend strongly on the availability of training data.

The methods are either learning-free, when all parameters are estimated based on the test mixture,

or learn spectral templates on small amounts of data. On one hand, the usage of prior knowledge

enables good separation results. On the other hand, it implies strong assumptions. Especially

when dealing with music signals it is challenging to formulate models which are precise enough to

be useful for the separation and at the same time do not constitute an oversimplification and keep

an appropriate degree of flexibility.
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In contrast, data-driven deep learning approaches avoid explicit modeling and strong assump-

tions. They enabled massive performance improvements using high capacity learning models

trained on large datasets. However, the fact that performance gains can be achieved through

larger models and/or more data has led to a rise in resource demands. In fact, in most research

fields which were revolutionized by deep learning, the focus has been almost exclusively on perfor-

mance while e�ciency was often neglected [170]. Audio source separation is not an exception. At

the same time, available prior knowledge is ignored by most data-driven methods.

There lie opportunities in the combination of data and knowledge based information for source

separation. Integrating prior knowledge into deep learning approaches may lead to better perfor-

mance, higher e�ciency, less dependence on training data quality and quantity, and in general

more robust methods. In this context, data quality does not only concern the audio quality of

recordings but also includes the question to which extent labels or isolated signals are available for

supervised training.

Some combined approaches were already proposed. For example, in [79] the computation and

application of soft masks was included in the optimization procedure for RNN training. It enforced

the constraint that the estimated sources add up to the mixture. Side information was also used

in music source separation with DNNs. In [129] the mixture spectrogram is filtered with a soft

mask derived from an aligned musical score and the filtered mixture is then processed by a CNN

to make the final source estimation. In [47] score information is used to impose structure on

hidden representations in a DNN trained for source separation. Another interesting way of using

model-based knowledge was to let a DNN estimate parameters of a synthesis model to generate

the target source signal instead of predicting masks for filtering the mixture [12]. The synthesis

model e�ectively limits the output space of the estimation problem but the synthesis quality is

highly sensitive to errors in the estimated parameters.

More works on data-driven methods which exploit prior knowledge are reviewed in the related

chapters of this thesis. This line of research has already shown promising results. We hypothesize

that there is still potential to explore new ways of using side information and/or model-based

knowledge for music source separation with deep learning. The goal of this dissertation is to make

contributions to this research direction.
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Chapter 4

Weakly Informed Audio Source

Separation

Summary

In this chapter a generic DNN architecture for informed audio source separation is proposed which

exploits side information which is only coarsely aligned. We conduct singing voice separation

experiments using artificial side information as proof of concept. Furthermore, we test the model

on text-informed speech-music separation with joint text alignment. This chapter builds a basis for

the next chapter dealing with text-informed singing voice separation. It is based on the publications

Weakly Informed Audio Source Separation [166] and Joint Phoneme Alignment and Text-Informed

Speech Separation on Highly Corrupted Speech [167].
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4.1 Introduction

A challenge for the usage of any side information for audio source separation is that it needs to

be temporally aligned with the mixture signal. However, musical scores or text transcripts usually

come without any alignment information. Therefore, they are considered as weak side information.

Automatic alignment of side information with mixtures is especially di�cult because the audio

signals do not only contain the signal corresponding to the side information but also other sound

sources. For example, methods for text-to-speech alignment are developed for rather clean speech

signals and do not perform as well on corrupted speech [89, 11]. Also, automatic lyrics alignment

methods assume isolated vocals [62] or require prohibitively large databases for training [182].

This results in a chicken and egg problem: alignment is required for text-informed voice sepa-

ration and clean voice signals are required for high quality automatic alignment. Our hypothesis

is that performing both tasks jointly leads to mutual benefits. The separation component facili-

tates alignment on mixtures while the alignment makes the text information more useful for the

separation task. Apart from the separation task, aligning text at phoneme level on mixed speech

or singing voice has interesting applications such as generating training data for robust speech or

lyrics recognition systems or aligning subtitles for movies.

We propose a novel deep learning based separation method that employs weak side information

using an attention mechanism (cf. Section 2.3.5). The model has a sequential encoder-decoder

architecture where the decoder is connected to the side information via attention. The whole side

information sequence is thus accessible to the decoder at all time steps. During training, the model

learns to evaluate the relevance of the side information elements with respect to the separation task.

Hence, only the most informative elements are taken into account for the separation at each time

frame. The relevance is reflected in the attention weights from which alignment information can

be retrieved. Therefore, the model allows to perform informed separation and alignment jointly.

In this chapter, we evaluate the proposed method in two sets of experiments. As a proof of

concept, we first perform informed singing voice separation using artificial side information with

di�erent levels of expressiveness. Thereafter, we perform a second set of experiments on text-

informed speech-music separation with joint text alignment. Written words are decomposed into

phonemes (cf. Section 2.2.2) which contain information about the sounds produced by a speaker or

singer, e.g. if they are voiced or unvoiced, their phonetic class, and order of appearance. We show

that the quality of the separated speech can be improved through text information without pre-

alignment. Beyond, as a method for phoneme level text-to-speech alignment, the model achieves

good results on clean speech as well as on strongly corrupted speech with a Signal-to-Noise Ratio

(SNR) of -5 dB.

Using the model on speech signals is an important step towards text-informed singing voice

separation with joint lyrics alignment which will be addressed in Chapter 5. It is uncertain if the

phonetic information of a text transcript represents exactly the phonetic content of a voice signal.

The probability that a speech signal is well represented by a text transcripts is higher than for

a singing voice signal. This is because intelligibility is the primary goal of speech signals while

singing voice also focuses on artistic expression following a certain melody and rhythm.

Therefore, we assume that the model for text-informed voice separation must first work on

speech signals in order to be also applicable to the more challenging case of singing voice. More-

over, there is no publicly available dataset for text-informed singing voice separation. This is

an additional motivation to validate our approach first using existing datasets for speech before
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creating such a dataset for singing voice.

Finally, speech-music separation is an interesting task in its own right. Speech enhancement

research focuses mainly on noise as interfering source [207]. However, musical sound sources also

often corrupt speech signals. For example, speech-music separation is used to separate dialogues

from background music in movies or to make voice commands intelligible in the presence of music

which is important for voice controlled home speakers. The speech-music separation task has

mainly been studied in simplified settings so far [30, 105].

4.2 Related work

4.2.1 Weakly labeled data

Training models with weakly labeled data remains a challenging problem for a variety of audio

related tasks [47, 129, 162, 101]. In this context, multi-instance learning has been applied to singing

voice detection [162] and acoustic event detection [101] to gradually refine the labeling during

supervised training, but with limited e�ectiveness [47, 162]. For informed source separation, it has

been proposed to approach training with weak labels in an unsupervised fashion [47]. The side

information is then used to enforce structure on the latent representation of the mixture within an

autoencoder model. While the approaches above aim for training with weakly labeled data only,

we intend to complement supervised strong label training with additional weaker side information.

In [129], a tolerance window allows for misalignment of around 0.2 seconds during score-informed

source separation. The model proposed in this work allows for much coarser alignments. Instead

of explicitly guiding the network regarding how to use the side information as done in [47, 129],

the proposed model learns the best use of the side information for the separation task from data.

It has been tested in [105] if the alignment of side information can be improved during text-

informed source separation with NMF. No improvement over the pre-alignment could be reported,

while the authors stated that it would have been beneficial for the separation quality. We show in

experiments that our model can indeed improve the alignment by a considerable extent.

4.2.2 Text-informed speech separation

Text-informed speech-music separation has been studied first in [104]. An example speech signal

is synthesized from the text transcript and then aligned with the observed mixture using Dynamic

Time Warping (DTW). The separation is done with a variant of NMF exploiting similarities

between the target speech and the example speech signal. The results show that text information

is beneficial for the separation. In [91], text-informed speech enhancement is done using a DNN.

A sequence of phonemes is forced-aligned with noisy speech and then fed to the DNN together

with the audio features. The authors show that the text information improves the separation

in terms of cepstral distance to clean speech. Information about phoneme identities is exploited

for speech separation in [209] and [16] without using text-transcript as additional input. Instead,

the phonemes are recognized from the input signal using Automatic Speech Recognition (ASR)

techniques. Then, pre-trained phoneme-specific networks perform the separation. Additional e�ort

is required to compensate for the limited performance of ASR on corrupted speech [209, 16].

Text-to-speech alignment faces two challenges: very long audio signals and corrupted speech.

While some approaches cope with the former [89, 11], the latter is far from being solved for low

SNRs. The method based on probabilistic kernels in [11] can align text with long audio signals but
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performance decreases when the speech is mixed with music. The approach in [132] applies ASR

on a long speech signal and aligns a given text transcript with the recognized text. The process is

iterated with an updated vocabulary and language model for regions that have not been aligned

with high confidence in previous iterations. It can deal with noisy speech with an SNR of 15 dB. In

[89], this approach is further improved by also updating the acoustic model on non-aligned regions

leading to good alignment results up to an SNR of 10 dB. The Montreal Forced Aligner (MFA)

[122] is a more advanced alignment method. It uses a Gaussian Mixture Model (GMM) Hidden

Markow Model (HMM) ASR system and is trained in three iterative steps. First monophone, then

triphone GMMs are trained iteratively, as in [89], to generate alignments on which acoustic feature

transforms for speaker adaptation are learned as a third step.

The alignment capabilities of the attention mechanism have been already observed in [20] on

a speech recognition task but have not been evaluated for alignment. Attention has been recently

used to cope with non-aligned training data for a singing voice transcription task in [138].

4.3 Proposed method

Let x(t) be the observed single-channel mixture signal at discrete-time t. Let Y œ R
D◊M be a side

information sequence with feature dimension D and M time steps. If phonemes are used as side

information, Y = [y0, y1, ..., yM≠1] is a sequence of M phonemes represented as D-dimensional

one-hot vectors ym being a precise transcription of the utterance contained in x(t). Our goal is

to separate x(t) into a target source image v(t) and a mixture of all remaining source images a(t).

Moreover, we aim to predict the onset time of each side information element (e.g. a phoneme) in

the mixture signal.

The proposed model takes as inputs the magnitude of the mixture’s STFT |X| œ R
F ◊N with

F frequency bands and N time frames as well as the information Y. The output is an estimate of

the target’s magnitude STFT |V̂| œ R
F ◊N . An inverse STFT of |V̂| combined with the mixture

phase is performed to obtain the target estimation v̂(t) in the time domain. Assuming a linear

mixture model, the estimation of remaining sources â(t) is obtained as â(t) = x(t) ≠ v̂(t).

4.3.1 Base model

The proposed model comprises four building blocks, namely a mixture encoder, a side information

encoder, an attention mechanism, and a target source decoder as shown in Figure 4.1. A PyTorch

implementation of the model is available online1.

The mixture encoder is a two-layer deep Bidirectional Recurrent Neural Network (BRNN) [169]

with Long Short-Term Memory (LSTM) cells [75]. Given |X| which is viewed as a sequence of N

column vectors [x0, ..., xN≠1], it computes the matrix G = [g0, ..., gN≠1] œ R
E◊N which we call

the mixture encoding. It has feature dimension E and length N over time.

The side information encoder has the same architecture as the mixture encoder. Given the

sequence of side information frames Y, it computes H = [h0, ..., hM≠1] œ R
J◊M which we call the

side information encoding with feature dimension J .

The target source decoder gets as inputs the mixture encoding G and a representation of

the side information encoding denoted C, which is computed by the attention mechanism as will

be explained further below. Both inputs are concatenated along the feature dimension, which

1https://github.com/schufo/wiass
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Side-information encoder Mixture encoder

Target source decoder

Attention mechanism

Figure 4.1: Schematic model architecture and workflow of the attention mechanism to compute
the n-th prediction frame v̂n.

is denoted by [cn, gn]. The decoder computes one time frame of the target source estimation

|v̂n| through the following layers. W and b are learnable weights and biases respectively in the

equations below. First, a fully connected layer computes the hidden representation q
(1)
n :

q(1)
n = tanh(W1[cn, gn] + b1). (4.1)

Then, a two layers deep BRNN with LSTM cells, as used in the encoders, computes the hidden

representation q
(2)
n . Finally, another fully connected layer with ReLU activation [119] computes

the estimation:

v̂n = max(0, W2q(2)
n + b2). (4.2)

Predicting time-frequency masks as in [128] instead of magnitude spectrograms directly did not

lead to better results in our experiments.

The attention mechanism [6] identifies the relevant elements in the side information sequence

for each time step n of the target source decoding and summarizes them in a context vector cn.

Consequently, the decoder can find at every time step the relevant side information elements no

matter where they are placed in the sequence. This makes a pre-alignment redundant. We closely

follow the attention mechanism proposed in [6] and refined in [118] (cf. Section 2.3.5).

For time step n of the decoder, the vector cn is computed as follows. A score sm,n is calculated

representing the similarity between the mixture encoding gn and each of the M side information

encoding steps hm:

sm,n = g€
n Wshm ’m œ {0, 1, ...M ≠ 1} (4.3)

where Ws œ R
E◊J is a matrix of learnable weights. Then, attention weights –m,n are computed
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from the scores by a softmax operation:

–m,n =
esm,n

qM≠1
k=0 esk,n

. (4.4)

Each side information element hm thus has a dedicated weight –m,n reflecting its importance

for the decoder time step n as a probability. The context vector cn is the weighted sum of all side

information encoding elements:

cn =
M≠1ÿ

m=0

hm–m,n. (4.5)

The target source estimate is then computed from the context vector and the mixture encod-

ing gn as described above. The alignment between mixture and side information is reflected in

the attention weights –m,n and is learned without any additional term in the loss function. Note

that attention was originally proposed to align decoder hidden states with the input sequence

(cf. Section 2.3.5). In contrast, we use it to align two input sequences.

4.3.2 Adaptation for text-informed speech-music separation

We derive three versions from the base model introduced above by modifying the way the phoneme

sequence Y is processed, which we identified as a crucial point for the use of text as side information.

It is worth mentioning that the phoneme encoding H serves two distinct purposes: (1) being an

input to the attention mechanism identifying which phoneme is relevant at which mixture time

frame and (2) being an input to the target source decoder in the form of cn to inform the separation

process.

For Version 1 (V1) we reduce the number of LSTM-RNN layers in the side information encoder

to one and thereby limit its capacity. This leads to a more general representation of phonemes in

H making it more applicable to fulfill its two purposes at once. Moreover, it reduces overfitting in

limited data settings. Version 2 (V2) is identical to V1 except for an unidirectional LSTM-RNN

in the phoneme encoder. This further reduces the number of learnable parameters and forces the

model to process the phonemes strictly from left to right. Version 3 (V3) is equal to V1 but hm is

processed by a linear layer l before going into cn. This changes equation (4.5) to

cn =
M≠1ÿ

m=0

l(hm)–m,n (4.6)

and means the model can learn two di�erent representations of phonemes for their two purposes.

4.3.3 Retrieving phoneme onsets from attention weights

Given a sequence of phonemes Y and a corresponding audio signal x(t) containing speech, the goal

of phoneme-to-audio alignment is to estimate the onset times of each phoneme in the audio signal.

We retrieve onsets from the attention weights using the DTW algorithm [204].

The attention weights can be represented collectively as attention matrix A with shape (M, N)

as shown in Figure 4.2. With DTW, we find the optimal path through A from (0, 0) to (M≠1, N≠1)

indicating which phoneme is active in which spectrogram frame. It maximizes the sum of attention

weights it passes being restricted to only two possible moves, namely (m, n + 1) and (m + 1, n + 1).

This means we assume that all phonemes are pronounced and given in the correct order. An
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Attention matrix Optimal path

Figure 4.2: Attention matrix (left) and DTW optimal path (right). Darker color represents higher
values. All values are in [0, 1].

optimal path obtained this way is shown in Figure 4.2.

Knowing the hop size of the STFT that has been performed on x(t), we know the exact position

in time of each time frame. The estimated onset time of a phoneme is the mid-point of the first

time frame it has been assigned to by the optimal path.

Since our approach learns the alignment as a side outcome of learning speech separation, it can

cope with much lower SNRs than other alignment methods which learn acoustic models from clean

speech data. Training data with annotated phoneme onsets are not required.

4.4 Separation evaluation of silent frames

The metrics SDR, SAR, and SIR are typically computed on non-overlapping frames for which

t œ {0, 1, ..., T Õ ≠ 1} and T Õ is chosen so that the frame has a length of one second. The median

over the frame scores is taken to represent the performance on the whole signal [185].

However, for frames with a silent true source (v(t) = 0 ’t) or prediction (v̂(t) = 0 ’t), the

metrics are undefined [202]. The MUSDB test set [151] has 2600 frames with silent vocals and

103 frames with silent accompaniment. As a result, at least about 45 out of 210 minutes are

systematically ignored during evaluation, with potentially more frames being ignored when the

prediction is silent. This issue has also been observed in [183], where the authors suggest reporting

the root mean square energy of the prediction for frames with silent ground truth. Inspired by

this suggestion, we propose the Predicted Energy at Silence (PES) score. It is the energy in the

predictions at those frames with silent ground truth:

PES =

Y

]

[

10 log10

qT Õ≠1
t=0 v̂2(t) if

qT Õ≠1
t=0 v2(t) = 0

n.d. otherwise
(4.7)

The PES reflects a method’s capability to not get confused by other sources while the target is not

active.

In order to include every single test frame in the evaluation, we also need to evaluate frames

for which silence is predicted while the ground truth is not silent. Therefore, we propose also the

Energy at Predicted Silence (EPS) score, which is (the mean) of the ground truth energy of all
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frames with silent prediction:

EPS =

Y

]

[

10 log10

qT Õ≠1
t=0 v2(t) if

qT Õ≠1
t=0 v̂2(t) = 0

n.d. otherwise
(4.8)

The EPS reflects a method’s capability to predict silence at the correct time. We suggest to report

the mean of the PES and EPS over all frames where they are defined. Note that in contrast to

SDR, SAR, and SIR, the scores for PES and EPS are the better the lower they are.

We made a Python script to compute the metrics publicly available.2

4.5 Experimental proof of concept

We perform monaural singing voice separation with the proposed model using artificial side infor-

mation about the singing voice with di�erent levels of expressiveness.

4.5.1 Experimental setup

Data

We use the publicly available dataset MUSDB [151] comprising a 100 tracks training set and a 50

tracks test set containing various genres. We split the training set into 80 tracks for training and 20

tracks for the validation set. All songs are converted to mono, downsampled to 16 kHz, and cut into

fragments of 8.2 seconds. The STFT is computed on each fragment with a Fast Fourier Transform

(FFT) length of 1024, Hamming window, and hop size of 512 leading to magnitude spectrograms

of size (F ◊ N) = (513 ◊ 256). Each magnitude spectrogram is divided by its maximum value to

normalize it to the range [0; 1].

As data augmentation we set the energy ratio between vocals and accompaniment to a value

uniformly drawn from the ±2 dB range around the original energy ratio. We also shift the mixture’s

pitch by w half tone steps, with w being uniformly drawn from [≠2; 2]. These random operations

are repeated four times on each original fragment leading to 8152 fragments for training in total.

We use this limited amount of publicly available data to make our results easier to reproduce.

However, it is not straightforward to evaluate whether performance of data-driven methods is

limited by the model’s architecture or the amount of training data [185]. We therefore repeat all

experiments with additional training data (65 rock-pop song excerpts with 96 minutes total length)

to test if performance is scalable.

Training

We train the model on batches of 128 spectrograms randomly drawn from the training set. The

loss function is the L1 loss. The Adam optimizer [90] is used with learning rate 0.0001, —1 = 0.9,

—2 = 0.999, ‘ = 10≠8, and weight decay rate 0.001. We set both the size E of the mixture encoding

and size J of the side information encoding to 513. We select the model with the lowest validation

cost after 100 epochs without improvement of the validation cost.

2https://github.com/schufo/wiass
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Side information

The side information Y has length M , which can be equal to or di�erent from the mixture length

N . We use side information with feature size D = 1.

We use two baseline models. The first one (BL1) only consists of the mixture encoder and target

decoder. It does not use any side information. As second baseline (BL2) we use the full proposed

architecture, which is also used in all subsequent experiments, and provide only meaningless side

information: a sequence of ones. This allows us to investigate to which extent the added learning

capacity of the attention mechanism and side information encoder improves performance. Next,

we investigate whether performance can be further improved with meaningful side information.

First, we provide the total vocals Magnitude (M) for each time frame as side information. It is

derived from the ground truth spectrograms by summing the magnitudes of all frequencies at each

time step: Y =
qF ≠1

f=0 |vf,n| where vf,n is the time frequency bin of the true source spectrogram

at frequency index f and time frame n. It is considered as very strong information, since it has

the same length as the mixture (M = N = 256) and is numerically closely related to the ground

truth. We call it M1. We then derive M2 from it by padding both sides of the sequence so that

M = 300. We use 100 as padding value and randomly choose the padding length on both sides for

each batch. As a result, M2 conveys the same strong information as M1 but is less synchronized

to the mixture. The position of relevant information varies from batch to batch during training

and from example to example during testing.

Binary sequences indicating vocal Activity (A) and non-activity are derived from M1 by setting

all time steps with total magnitude values below 0.1 to zero and all other steps to 1. In practice,

such weak information can be obtained by vocal activity detection methods [163]. For experiment

A1 we pad the binary sequence to length M = 300 keeping the padding value 100 following the

procedure of M2 to de-synchronize it from the mixture.

M1

M2

M1

A1

A2

A3.1

A3.2

True vocals spectrogram

binarize

pad

squeeze zeros

squeeze ones

circularly shift

Figure 4.3: Visualization of the artificial side information used in the experiments. Dark blue
indicates zero, padding is shown in yellow.

For experiment A2, we further weaken the information by deleting a random number w of zeros

in each sub-sequence of zeros in the binary sequence. We draw w uniformly from [1; L/2] for each

example, where L is the length of a sub-sequence of zeros. We pad the remaining binary sequence

to length M = 300 as above. The sequence Y now only contains information about the number of

appearances of silent parts in the vocals and their position relative to non-silent parts. Information
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about the silence length is almost completely lost.

For experiment A3, we weaken the binary information even further by additionally reducing

the length of sub-sequences of ones with the same rule as applied to zeros in A2. We also pad to

length M = 300. Now, Y carries only information about the alternations between vocal activity

and silence. We test the model trained with side information A3 in two di�erent inference settings.

First, with the same side information as seen during training (A3.1), then with this side information

circularly shifted by 100 steps (A3.2). An overview of the di�erent side information types is

presented in Figure 4.3.

4.5.2 Results and discussion

The evaluation results for models trained only on MUSDB are shown in Figure 4.4. The results

for models trained using additional data are shown in Figure 4.5. The use of additional data is

indicated by the ’+’ added to the experiment name.

Each data point in the boxplots represents the median over all evaluation frames of one test song

following the procedure described in Section 4.4. The box extends from lower to upper quartile

with the line inside representing the median. The whiskers extend over the whole data range. Note

that for the proposed PES and EPS metric lower values are better, while for the standard metrics

higher values are better.

Figure 4.4: Boxplots of the source separation evaluation results for experiments using only MUSDB
data. For SDR, SAR, SIR higher values are better, while for PES and EPS lower values are better.
BL: baseline, M: vocal magnitude side information, A: vocal activity side information.

The relative results do not change substantially when using more training data. The baselines

BL1 and BL2 achieve a median SDR of 3.0 dB and 3.33 dB respectively, which, given the amount

of training data and simplicity of the model, can be considered an appropriate baseline. The

improvement of BL2 over BL1 shows that the proposed model can leverage the additional capacity

even with meaningless side information. Adding only 96 minutes of training data (BL2+) improves
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Figure 4.5: Boxplots of the source separation evaluation results for experiments using MUSDB and
additional data. For SDR, SAR, SIR higher values are better, while for PES and EPS lower values
are better. BL: baseline, M: vocal magnitude side information, A: vocal activity side information.

performance on all metrics so that the baseline would have only been outperformed by models

trained on much more data in the Signal Separation Evaluation Campaign 2018 [185].

The use of all types of meaningful side information considerably improves performance on silent

vocal frames resulting in a much lower PES and predicting silence at the right time resulting in

a lower EPS. In case of M1 and M2, the SDR and SIR are also improved, while with the binary

vocal activity side information the standard metrics do not change much compared to the baselines.

These observations are in line with [183]. For frames with high vocal energy, a lot of information

about the vocals is already contained in the mixture. Consequently, the binary side information

does not add information for these frames, while the vocal magnitude information does. For frames

with silent or near-silent vocals, any other source can potentially be mistaken as vocals leading to

wrong predictions. In this case, the binary information is useful to understand the alternations

between vocal activity and non-activity. The fact that M2 performs slightly better than M1 can

be explained by the data augmentation e�ect of the random padding in M2.

In general, it is not surprising that additional information leads to better separation results.

Our contribution lies rather in the fact that the proposed model can exploit such information

despite its weakness. Note that the binary side information types carry less information than a

musical score. Audio examples are available online3.

In addition to improving source separation performance by exploiting weak side information,

the proposed model also provides an estimate of the alignment between the side information and

the mixture through the attention weights. In Figure 4.6 the attention weight matrix A is shown

for experiments M2 and A3.1 for one fragment of the MUSDB test track Schoolboy Fascination,

which is also available as audio example. On the left of each matrix A the corresponding side

information is depicted vertically with time step index m. Dark blue indicates a zero value, while

3https://schufo.github.io/publications/2019-WASPAA
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(a) Experiment M2
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(b) Experiment A3.1

Figure 4.6: Attention weights A containing alignment information. The side information is shown
vertically on the left of A and the true vocals spectrogram below. Lighter color indicates higher
values.

padding is shown in yellow. Below A the true vocals spectrogram is shown with frequency bin

index f and time frame index n. The lighter the color at point (m, n) in A the more the side

information element at m is taken into account for producing the prediction at time step n. For

M2 a very exact alignment to the mixture is learned, it becomes a bit blurry at the silent vocal

part, where the side information contains low and therefore similar values. For A3.1 the model

learned to look at ones and zeros at the right time, although the sub-sequences are much shorter

than the corresponding parts in the true vocals. The model learned to never look at the padding

values. The attention weights show that the model has indeed learned to find the relevant side

information at each time step without any pre-alignment.

4.6 Experiments on text-informed speech-music separation

with joint text-to-speech alignment

4.6.1 Experimental setup

We perform text-informed speech-music separation with joint text-to-speech alignment with the

models V1, V2, V3 described in section 4.3.2. As baseline (BL) for the separation task, we use a

model with the same configuration as V1. It resembles the speech separation model in [17] which is

a four-layer LSTM-RNN with a linear output layer. Compared to [17], the BL has more expressive

power through the attention mechanism and the phoneme encoder. It gets, instead of phonemes,

a sequence of ones as side information, which does not convey any additional information about

the speech signal to be separated. At the same time, BL has the same computational capacity as

the models under test. This allows us to observe the exact e�ect of text as side information. We

share the code of all models and experiments online.4

Data

We use the instrumental accompaniments of the MUSDB dataset [151] as music signals and mix

them with speech signal of the TIMIT corpus [53]. All music signals are converted to mono,

downsampled to 16 kHz, and cut into snippets of 8.2 seconds, which is longer than all available

4https://github.com/schufo/tisms
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speech signals. For training, we mix snippets of 80 MUSDB tracks with 4320 TIMIT utterances.

The validation set contains 20 music tracks and 240 utterances and the test set 50 music tracks

and 1344 utterances. The start time of the utterance within the 8.2 seconds of music is chosen

randomly and di�ers for every example and every epoch. During training, we mix speech and

music with a SNR uniformly drawn from [≠8, 0] dB. For the validation and test set, we mix with

SNR = -5 dB. The SNR is calculated only on the signal parts where the speech is active. There

is no utterance or speaker overlap between the training, validation, and test set. The STFT

is computed with Fast Fourier Transform length 512, Hamming window, and hop length of 256

leading to magnitude spectrograms of size (F ◊ N) = (257 ◊ 512). Each magnitude spectrogram

is divided by its maximum value to normalize it to the range [0, 1].

As text information, we use the available phoneme level transcripts for the TIMIT speech

recordings. The phonetic alphabet used in TIMIT is an extended version of the ARPAbet (cf. Sec-

tion 2.2.2). It comprises 60 di�erent phoneme symbols to which we add a silence token (<S>) and

a padding token for batching. The silence token is added to the start and end of each phoneme

sequence because the speech is not active at the beginning and end of the mixture signal.

Training

We use the L1 loss, batch size 32, and the Adam optimizer [90] with learning rate 0.0001, —1 = 0.9,

—2 = 0.999, ‘ = 10≠6. The learning rate is reduced to 10≠5 for the first 200 epochs. We stop

training after 200 consecutive epochs without a decrease in validation cost.

4.6.2 Results and discussion

Speech-music separation results

We evaluate the predicted speech signals in terms of the objective separation quality metrics SDR,

SAR, and SIR [202]. We also compute the Perceptual Evaluation of Speech Quality (PESQ) [156]

and the Short-Time Objective Intelligibility (STOI) measure [189]. A brief introduction to the

metrics was given in Section 2.1.2. The SDR, SAR, and SIR are computed on non-overlapping

frames of 1 second length and the median value is taken to represent performance on one test

example.

In Table 4.1, the median over the test set is presented for all metrics. Given the di�culty of

the task (the SNR is -5 dB), BL performs well. The median STOI and PESQ of the corrupted

speech in the test set are 0.64 and 1.48, respectively, which BL improves considerably. V1, V2 and

V3 improve the PESQ over BL. This indicates that text information can improve the perceived

quality of separated speech signals. The SDR, SAR, and SIR are only slightly changed compared

to BL.

To test the upper bound of separation quality improvement through phoneme information in

our experiment setting, we take our best model V2 and input the Optimal Attention (OA) weights

during training and testing instead of learning them. For OA, we set –m,n to 1 if phoneme m

is active in frame n and to 0 otherwise based on the true phoneme onsets available with TIMIT.

We can see in Table 4.1 that the SDR, SAR, and PESQ for OA improves over BL. This result

shows that text information can improve speech separation further when the alignment is provided

instead of learned jointly.
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SDR SAR SIR STOI PESQ

BL 8.81 10.60 14.53 0.87 2.66

V1 8.64 10.39 14.44 0.87 2.72
V2 8.86 10.57 14.55 0.88 2.74
V3 8.76 10.47 14.53 0.88 2.74

OA 8.93 10.70 14.58 0.88 2.84

Table 4.1: Separation quality evaluation results, all values are medians over the test set. SDR,
SAR, SIR are shown in dB. BL: Baseline, V1-3: Version 1-3, OA: Optimal Attention weights.

We also provide audio examples online5. In informal listening tests we observed that while some

word endings are not audible in baseline predictions, they are clearly audible in the predictions of

V2 and OA.

Text-to-audio alignment results

As baseline for the phoneme alignment task, we use the Montreal Forced Aligner (MFA) [122]. It

is an open source trainable alignment model based on the speech recognition toolkit Kaldi [147]. It

learns an acoustic model using GMM-HMMs. To train it, we follow closely the procedure described

in [122] which leads to advantageous conditions for the MFA: It is trained on all available data

(training, validation and test data), it gets the speaker identity of each utterance to perform speaker

adaptation, and each example is cut at the start and end of the utterance for training and testing

(no long ”music-only” parts). We test all methods on the test set for two cases: clean speech and

SNR = -5 dB. The MFA is trained on clean and corrupted speech respectively to learn appropriate

acoustic models.

We evaluate the Mean Absolute Error (MAE) on each test example. It is the mean of the

absolute di�erences between the true and predicted phoneme onsets in milliseconds (ms). The

mean and median MAE over the test examples are shown in Table 4.2. We see that V2 is not

suited for phoneme alignment, whereas it performed best on the separation task. On clean speech,

the MFA and V1 perform almost equally well. V1’s median is better indicating that its alignments

are more accurate when neglecting outliers. V1’s mean is worse indicating that it produces more

severe outliers. This can be explained by the dependence of our alignment method on somewhat

sharp attention weights. When the model focuses on many phonemes at each time step n, i.e. –

is not sharp, an optimal path indicating accurate phoneme onsets cannot be found.

Clean speech SNR = -5 dB
mean median mean median

MFA 16.3 15.7 38.4 26.0

V1 22.5 12.9 39.0 16.1
V2 326.2 75.4 355.0 120.2
V3 48.1 14.4 69.0 17.9

Table 4.2: Mean Absolute Error (MAE) of phoneme onset predictions in ms averaged over the test
set. MFA: Montreal Forced Aligner, V1-3: Version 1-3.

On corrupted speech with SNR = -5 dB, V1 clearly outperforms the MFA. The mean of both

5https://schufo.github.io/publications/2020-ICASSP

42

https://schufo.github.io/publications/2020-ICASSP


Chapter 4. Weakly Informed Audio Source Separation

methods is very similar while V1’s median MAE is almost 10 ms lower. In general, V3 does not

perform as well as V1 but still gives accurate predictions and outperforms the MFA regarding

median MAE on clean and corrupted speech.

Clean speech SNR = -5 dB

%

Figure 4.7: Percentage of correctly aligned phonemes with di�erent tolerances. MFA: Montreal
Forced Aligner, V1-3: Version 1-3.

We also compute the percentage of correctly aligned phonemes within a tolerance around the

true onsets. The results are shown in Figure 4.7. They confirm that V1’s and V3’s alignment

accuracy is not much a�ected by strong speech corruption while the MFA’s accuracy decreases.

Moreover, V1 and V3 estimate more than 50 % of all phoneme onsets with less than 10 ms error

compared to the true onsets on clean speech. Even for the case of SNR = -5 dB, V1 aligns 50 %

of the phonemes within the 10 ms tolerance.

Overall, the results show that there are mutual benefits when performing both tasks, informed

separation and alignment, jointly. However, the gain in separation quality through phoneme se-

quences that are aligned jointly is quite small. The separation can be improved further if the

alignment is done beforehand. In contrast, the alignment benefits substantially from the separa-

tion component when dealing with corrupted signals.

4.7 Conclusion

In this chapter, we introduced a deep learning model which exploits weak side information via at-

tention for supervised audio source separation. It also provides an alignment of the side information

with the audio mixture.

We evaluated the model in two sets of experiments. First, the concept of using attention

between two encoders with a shared decoder was validated on a singing voice separation task with

artificial side information such as vocal magnitude and vocal activity. The results showed that

non-aligned side information can be exploited and aligned with the audio data using an attention

mechanism when the model is trained only with a source separation objective. In the second

set of experiments, text was used as side information to separate speech from music in low SNR

mixtures. The text was represented as a sequence of phonemes. Joint phoneme alignment and

speech separation led to benefits for both tasks. However, the separation is further improved if

the text is aligned beforehand. Phonemes are accurately aligned even on highly corrupted speech

signals.

It can be concluded that non-aligned text can be used with the proposed approach to inform

audio source separation. In the next chapter we will further develop the approach in order to use

it for text-informed singing voice separation.
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Text-Informed Singing Voice

Separation and Lyrics Alignment

Summary

In this chapter the model introduced in the previous chapter is further improved with a new mono-

tonic attention mechanism. It enables the model to perform phoneme-level lyrics alignment and

text-informed singing voice separation. The result is a new data-e�cient lyrics alignment method

and new insights into the usage of text information for singing voice separation. Moreover, the

musical source separation corpus MUSDB was extended by lyrics transcripts and other annota-

tions. This chapter is based on the publication Phoneme Level Lyrics Alignment and Text-Informed

Singing Voice Separation [168].
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5.1 Introduction

The goal in this chapter is to perform text-informed singing voice separation and phoneme level

lyrics alignment building upon the approach introduced in the previous chapter. The motivation

for using text as side information for deep learning based singing voice separation is that training

data are scarce and expensive due to copyright restrictions. The question arises to which extend

separation quality can be improved without access to more audio data by using complementary

information such as text which is decomposed into phonemes (cf. Section 2.2.2).

We assume that phonemes need to be aligned with the observed mixture in order to inform the

separation process. While great progress has been made regarding lyrics alignment at word level

using resource intensive methods [182, 64], phoneme level alignment is rarely addressed although

the methods in [182, 64] could be adapted to it. In fact, when phoneme alignment is required,

they are often aligned manually [35, 56] or tools such as [122] are used [9, 100, 64] which employ

acoustic models based on GMM-HMMs and do not work well on mixed singing voice as will be

shown in Section 5.5.2. Aligning lyrics at phoneme level with audio mixtures has applications such

as generating karaoke content, singing voice analysis, and creating training data for automatic

lyrics transcription models.

Instead of adapting existing alignment methods to phoneme level alignment, we introduce a

new approach to lyrics alignment building upon the previous chapter. Hence, the alignment will

be performed jointly with text-informed singing voice separation. However, the model proposed in

Chapter 4 was only evaluated on speech and does not work on singing voice without modifications

which are introduced in this chapter. In Figure 5.1, the attention weights of the model of Chapter 4

are shown at test time for three di�erent scenarios: a) trained and tested on speech-music mixtures,

b) trained and tested on singing voice and accompaniment mixtures, and c) pre-trained on speech-

music mixtures, then trained and tested on singing voice and accompaniment mixtures. While the

correct monotonic alignment is learned for speech, the correspondence between singing voice and

phonemes is not learned by the model. With pre-training on speech, some correspondence between

text and audio is learned. However, the alignment is not monotonic as it should be because the

phonemes are uttered in correct order from left to right. Hence, no alignment information can be

derived from the attention weights and the usefulness of the text information for the separation is

limited.

Therefore, in this chapter we also integrate prior knowledge in the alignment procedure. The

knowledge concerns the fact that both text and audio sequences follow a logical and temporal

structure from left to right. We include it by integrating Dynamic Time Warping (DTW) in the

attention mechanism. This allows to obtain monotonic alignments. As additional modification,

we use the state-of-the-art musical source separation model Open Unmix [186] as target source

decoder in order to evaluate improvements of the separation quality through text.

As an alignment method, the model achieves competitive performance although much less train-

ing data are used than for state-of-the-art methods [64, 182]. However, the separation performance

does not improve compared to non-informed methods using the joint separation and alignment ap-
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(a) Speech (b) Singing voice

(c) Pre-training on speech, then training on
singing voice

Figure 5.1: Attention weights of the approach introduced in Chapter 4 for three cases: training
and testing on (a) speech-music mixtures, (b) singing voice/accompaniment mixtures, and (c)
pre-training on speech-music, then training and testing on singing voice mixtures

proach. Therefore, we also investigate a sequential approach where the phonemes are first aligned

with our method and then fed as side information to a dedicated separation model. This leads to

improvements through the text-information.

5.2 Related work

In this section, related work on lyrics alignment, monotonic attention, and informed source sepa-

ration is reviewed.

5.2.1 Lyrics alignment

Most approaches to automatic lyrics alignment are based on acoustic models that estimate text

unit (e.g. phoneme, character) probabilities given acoustic input features. When no large dataset of

music recordings with corresponding lyrics was available, some acoustic models have been trained

on speech and then adapted to singing voice [125, 100], but with limited success. Some works

proposed to take additional information next to acoustic features into account such as chord labels

[121] or phoneme durations inferred from a musical score [41]. These methods achieved good

performance when aligning lyrics at phrase level on mixtures.

Recently, deep learning based approaches have exploited larger data resources for acoustic

modeling on singing voice [182, 64]. They achieved high accuracy for word level alignment with
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mean absolute alignment errors below one second on mixed singing voice. The method of Stoller et

al. [182] learns an acoustic model on time domain signals to estimate character probabilities over

audio frames. It is trained on 39,232 songs with line level aligned lyrics using the Connectionist

Temporal Classification (CTC) loss [59]. The data intensive nature can be explained by the

end-to-end approach and the fact that character sequences are ambiguous regarding the word

pronunciation.

Gupta et al. [64] proposed to learn three genre-specific acoustic models for the broad classes

pop, hip hop, and metal on mixtures. Genre-specific models for non-vocal segments are learned

to improve the performance on long instrumental parts. It requires a training corpus with genre

labels and enough data per genre class to train all acoustic models. In total, 3913 songs are used

for training. Acoustic modeling and alignment are done using the open source speech recognition

toolkit Kaldi [147] with a duration-based pronunciation lexicon for singing voice [61]. The perfor-

mance seems to rely on a very large beam width during Viterbi decoding [63] as mentioned in the

previous work [173] which is computationally expensive.

Instead of adapting the data intensive methods [182, 64] for phoneme alignment, we propose a

novel alignment approach. The proposed model is actually trained for informed source separation

and learns the acoustic model without direct supervision as a side e�ect. It has the potential

to reduce the amount of required training data compared to [182, 64] because the task it solves

during training is simpler. It has to match the observed phoneme sequence with the observed audio

frames, whereas the other models need to classify observed audio frames into phonemes. However,

multitrack data are required for training of the proposed method.

The Montreal Forced Aligner (MFA) [122] is a tool that can be used to learn GMM-HMM

acoustic models and to align phonemes with audio signals. As initial alignment it assumes that

all given phonemes belonging to a short audio example have the same length. On such an align-

ment a monophone GMM-HMM is trained while iteratively re-estimating the alignment. Then,

triphone models are trained iteratively starting from the alignment provided by the monophone

model. Speaker adaptation is performed as a last step if the speaker identities are known. The

implementation is based on Kaldi [147]. Such a tool is commonly used to align phonemes with

singing voice to prepare training data for other tasks [9, 100, 64]. Therefore, it will serve as one of

the baselines for phoneme alignment.

5.2.2 Monotonic attention

In some cases, the alignment to be computed with an attention mechanism is known to be mono-

tonic. Modifications to the attention mechanism have been proposed in the context of speech

recognition [20, 150, 194] and machine translation [118, 194, 150] in order to enforce monotonic

alignments which can help to disambiguate repeated elements in the sequences. We refer to such

modified mechanisms as monotonic attention. One important di�erence between existing mono-

tonic attention models and our model is that they consist of only one encoder and one decoder

like the original attention model shown in Figure 2.2 (Page 18). Hence, the attention mechanism

aligns the encoder output with hidden states of the decoder. The hidden states are computed

autoregressively and cannot be observed all at once whereas we can observe both sequences to be

aligned entirely because they are both inputs to the proposed model.

Chorowski et al. [20] proposed to consider the attention weights for the previous decoder time

step in the scoring function for the current time step. This enables the model to learn a monotonic
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alignment but does not enforce monotonicity explicitly. Luong et al. [118] and Tjandra et al. [194]

use a sliding window over the encoder output sequences and only compute attention weights for

elements within this window. They explore both shifting the window monotonically from left to

right over the encoder output and learning to predict the window position for each decoder step.

Ra�el et al. [150] proposed a monotonic attention mechanism for online scenarios where the

input to the encoder is observed step-by-step. They define a stochastic process modeling the

dependency of the matching decision on previous time steps. It provides a hard alignment at test

time and the model is trained using soft alignments which reflect the expected outcome of this

process.

The sliding window approach and the stochastic process in [150] make the alignment decision

at a certain time step dependent on decisions at previous steps. An incorrect matching at some

time step can therefore lead to many incorrect matches at subsequent steps. Our approach relaxes

the dependence of attention weights across time steps during training. At test time, DTW finds

a globally optimal alignment which considers all elements of both sequences. Moreover, in autore-

gressive models the computation of attention weights cannot be parallelized for the decoder time

steps. DTW-attention allows for more parallel computations.

Another di�erence to the typical single encoder-decoder attention mechanism (cf. Section 2.3.5)

is that in our model the information coming from the text is not essential (but potentially useful)

in order to minimize the loss function, i.e. to learn the separation. Since the alignment is learned

driven only by the separation objective, we observed that too strong constraints on the attention

mechanism result in vanishing gradients for the text encoder and the attention mechanism so that

no alignment is learned, while the separation is still learned. Therefore, the approaches proposed in

[150] and [194] do not work in the context of this work. The proposed DTW-attention mechanism

is able to learn the alignment while incorporating monotonicity constraints.

Cuturi et al. [27] proposed soft DTW which enables computing the DTW distance between two

sequences with di�erent lengths in a way that is di�erentiable and well-suited for gradient-based

optimization. It allows using the DTW distance as a loss function but recovering the optimal

alignment path is not possible. Therefore, soft DTW is not applicable in the context of this work

and we propose DTW-attention to approximate the DTW alignment path in a di�erentiable way.

5.2.3 Informed audio source separation

Recently there has been an interest in including side information such as pitch [146, 85] or phonetic

content [192, 13, 127, 87] in deep learning based separation in order to make it more robust in

challenging scenarios. It has also been proposed to learn auxiliary tasks jointly, e.g. instrument

activation detection [80] in order to cope with a larger number of musical sources to be separated.

Most related to our work are four approaches that consider phonetic and linguistic information for

singing voice separation.

Takahashi et al. [192] use deep features from an End-to-End Automatic Speech Recognition

(E2EASR) model as side information for voice separation. The assumption is that the features

contain phonetic and linguistic information because E2EASR combines acoustic and language

modelling within one model. The side information leads to big improvements on speech separation

in challenging conditions. The improvement for singing voice separation is considerably smaller.

A possible reason is that the E2EASR model is trained on speech data and not adapted to singing

voice.
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Chandna et al. [13] train an encoder to extract content embeddings from mixtures. The

target content embeddings are obtained with a speaker conversion method and contain phonetic

information. From the embedding, a decoder estimates vocoder features which, along with a

fundamental frequency estimate, are used to re-synthesise the voice signal from a mixture. The

results show that the intelligibility of synthesized vocals is improved through phonetic features,

but the overall subjective audio quality is lower than for filtering based separation methods.

An advantage of the approaches in [192, 13] is that no alignment method is required because

phonetic information is extracted directly from the mixtures. On the other hand, the phonetic

information is rather implicit and the mixture remains the only source of information. We consider

explicit phoneme sequences from lyrics transcripts as additional model input that is independent

from the mixture.

Two approaches to lyrics-informed singing voice separation have been developed in parallel to

our work. In contrast to our work, they assume the availability of aligned lyrics.

Meseguer-Brocal and Peeters [127] use lyrics transcripts aligned at word level to condition

singing voice separation using a U-Net [86]. Words are represented as bag of phonemes (without

any temporal information at phoneme level) from which parameters are estimated to transform

deep features in the U-Net encoder. Improvements over the classic U-Net are reported. However, it

is not clear whether they are caused by the higher number of parameters in the conditioned U-Net,

the voice activity information inherent in aligned text, or by the phonetic information. Since only

word level alignment is available, the phonetic information of the text cannot be exploited entirely.

Jeon et al. [87] condition singing voice separation on lyrics manually aligned at syllable level.

They use a deep text encoder consisting of 1-D-convolutional highway layers [181]. The approach

is evaluated on a private dataset of Korean amateur solo singing recordings mixed with unrelated

accompaniments. To our understanding, only one singer sings at a time (no background singers,

no multi-pitch singing). This facilitates learning the relation between phonemes and audio during

training and the usage of text-information at test time. However, real commercial music recordings

often contain multiple voices making the use of lyrics for separation less straightforward.

In contrast to [127] and [87], we address the lyrics alignment problem which allows us to use

lyrics aligned at phoneme level. Furthermore, we provide extensive experimental evaluation using

publicly available realistic mixtures with multiple singers and correlated accompaniments. We

conduct a thorough analysis of the separation performance regarding the number of simultaneously

present singers and phonemes and regarding the SNR of the voice-accompaniment mixtures.

5.3 Proposed method

Let x(t) = v(t) + a(t) be a time domain single-channel mixture signal of singing voice v(t) and

instrumental accompaniment a(t) where t refers to the discrete time index. In the following, v(t)

and a(t) are assumed to be source images. Let y œ {0, 1}I be a one-hot vector representing one

out of I considered phonemes and let Y = [y1, ..., yM ] œ {0, 1}I◊M be a matrix treated as a

sequence of M one-hot vectors indexed by m representing the phonemes pronounced by the singing

voice in the mixture.

The goal of text-informed singing voice separation is to separate x(t) into v(t) and a(t) given

x(t) and Y as inputs. The goal of lyrics alignment is to estimate the onset time of each phoneme

represented in Y.

An overview of the proposed model is shown in Figure 5.2. The model is an improved version

50



Chapter 5. Text-Informed Singing Voice Separation and Lyrics Alignment

Alignment system (DTW-attention)Text encoder
Open Unmix

: Text
: AudioBLSTM

ReLU

BatchNorm
tanh

BLSTM
 x3

linear

BatchNorm
linear

linear
BatchNorm

ReLU
Text encoder

Audio encoder

Alignment

Open
Unmix

c) Sequential approach

Phoneme
onsetsDTW

: Estimated spectrogram
: True spectrogram

DTW: Dynamic Time Warping

a) Joint approach

Audio encoder

linear

BLSTM
 x2

BatchNorm
tanh

b) Hard alignment via DTW

: Optimal path
: Loss function

Figure 5.2: Overview of the proposed model. a) With the joint approach, alignment and separation
are learned by optimizing the separation objective. b) At lyrics alignment test time, the phoneme
onsets can be obtained from the score matrix via DTW. c) In the sequential approach, alignments
are not learned but provided by some alignment method, e.g. the joint approach model.

of the one introduced in Chapter 4 and consists of four parts. A text encoder and an audio

encoder which are detailed in section 5.3.1, an alignment system with a new monotonic attention

mechanism explained in Section 5.3.2, and Open Unmix [186] as a separation model described in

Section 5.3.3. Despite some overlap with the previous chapter, we briefly describe all parts in the

following in order for this chapter to be self-contained. A PyTorch implementation of the model

and our experiments is available online.1

5.3.1 The encoders

The text encoder is a single Bidirectional Long Short-Term Memory (BLSTM) layer [75, 55]. It

transforms Y into the hidden phoneme representation H = [h1, ..., hM ] œ R
R◊M where R is the

number of hidden features.

In the audio encoder, the Short Time Fourier Transform (STFT) of the mixture signal x(t) is

computed and we denote its magnitude X œ R
F ◊N
Ø0 where F is the number of frequency components

and N is the number of time frames which are indexed by n = 1, ..., N . Each time frequency bin is

scaled and shifted by learnable scalars which are initialized by the standard deviation and mean over

the training data, respectively, as in the Open Unmix model [186]. The audio encoder transforms

the input with a fully connected layer with tanh activation followed by two BLSTM layers into

the audio representation G = [g1, ..., gN ] œ R
S◊N where S is the number of hidden features.

5.3.2 The alignment system

The alignment system learns to align the vector sequences H and G. An alignment can be for-

malized as a path which we denote as sequence P = (p1, ..., pL) of length L where pl are tuples

with pl = (ml, nl) œ [1 : M ] ◊ [1 : N ]. The path satisfies the following conditions [134]:

p1 = (1, 1) and pL = (M, N) (5.1)

1https://github.com/schufo/plla-tisvs
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pl+1 ≠ pl œ {(0, 1), (1, 1)}. (5.2)

Each path tuple pl matches one phoneme with one audio frame. The step size condition in (5.2) is

chosen so that each audio frame is matched with exactly one phoneme, whereas the same phoneme

can be assigned to several audio frames. It follows that L = N . The condition also implies that the

alignment path is monotonic and continuous, i.e. we assume that the phonemes are pronounced in

the given order and no phoneme is skipped. The goal is to find the path that provides the correct

matching between audio and text.

When phonemes are to be aligned with speech, a standard attention mechanism can learn such

a monotonic alignment [167]. However, when working on singing voice, we found it to be crucial

to enforce monotonicity explicitly in order to learn an alignment. This is probably due to the

wider range of possible acoustic realisations of phonemes in singing due to a wider pitch range

and artistic expressiveness. Therefore, we propose DTW-attention, a combination of DTW and

attention to obtain monotonic alignments.

First, we compute a pair-wise matching score sm,n between all elements of the sequences G

and H as

sm,n = g€
n Whm (5.3)

with the learned weight matrix W œ R
S◊R as typically done in attention mechanisms [118]. It

evaluates how likely it is that the m-th phoneme is pronounced in the n-th audio frame regardless

of the position of gn and hm in their respective sequence.

Then, we incorporate the conditions (5.1) and (5.2) by computing the accumulated score matrix

D = [dm,n]m,n œ R
M◊N as typically done in DTW as follows [134, 160]:

dm,n = sm,n + max(dm,n≠1, dm≠1,n≠1) (5.4)

with

d0,0 = b and d0,n = dm,0 = ≠Œ ’m, n > 0 (5.5)

where b is a su�ciently large number. Note that in (5.4) the objective is to maximize the accumu-

lated score, whereas classical DTW usually minimizes a distance [160]. The reason for this is that

stronger similarity between a phoneme and an audio frame results in a higher score sm,n while it

would produce a lower distance value. The value dm,n is the accumulated score of the optimal

alignment path starting at (1, 1) and ending in (m, n) respecting the step size condition (5.2). The

optimal path in the DTW sense is the one with the highest accumulated score. The DTW step in

(5.4) helps disambiguate identical phonemes appearing several times in the sequence, which could

have the same score at a given time frame, by explicitly taking their order into account. It can be

implemented e�ciently by parallelizing computations of entries on the anti-diagonal of D or those

lying on a line parallel to it because they are mutually independent.

Using classical DTW, the actual optimal path could now be found by path backtracking [134].

However, such hard alignment, where one audio frame is matched with exactly one phoneme, is not

di�erentiable [27, 150] and thus not applicable in a deep learning model during training. Instead,

we will use a soft alignment strategy during training. When phoneme onsets are to be retrieved

at test time, we are able to compute P using the scores sm,n and classical DTW to obtain hard

alignments.
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Soft alignment during training

We compute attention weights – by a column-wise softmax operation on D as typically done in

attention mechanisms [6]:

–m,n =
edm,n

qM
k=1 edk,n

. (5.6)

The M attention weights corresponding to audio frame n can be interpreted as a probability

distribution over all phonemes for this time frame and hence provide a soft alignment. The phoneme

with the highest accumulated score in frame n has the highest probability –. This is a local

approximation of the globally optimal path that would be obtained by DTW. It assumes that the

phoneme with the highest accumulated score at frame n will be part of the optimal path. As we

explain in Section 5.6.2, this is true for 84% of the frames in our test set. Equations (5.4) and

(5.6) put a soft constraint on the attention weights to be monotonic, i.e. respecting (5.2). It is

soft because the dependence between time frames is reflected only in (5.4) whereas the attention

weights are computed for each frame independently in (5.6). This is in contrast to other methods

for monotonic attention, which we reviewed in Section 5.2.2, and avoids error propagation from

previous frames at the cost that there is no guarantee for strict monotonic paths during training.

We found this trade-o� to be appropriate in order for the model to learn the correspondence

between phonemes and spectrogram frames of (mixed) singing voice. It also allows for e�cient

parallel computation of attention weights. The attention mechanism does not require training

data with aligned phonemes. However, if such data were available they could be exploited trough

a supervised loss term on the scores or attention weights.

The text information corresponding to an audio frame is then computed as

cn =

Mÿ

m=1

hm–m,n (5.7)

and a new hidden text representation C = [c1, ..., cN ] œ R
R◊N which has the same length N as

the audio sequence G is obtained. Finally, C and G are concatenated along the feature dimension

and this combined text and audio representation is then processed further by the separation model

as explained in Section 5.3.3.

Hard alignment at test time for lyrics alignment

Once the model is trained, the scores sm,n can be used as a similarity measure between a given

phoneme sequence and the spectrogram frames. A globally optimal alignment Pú can then be found

by DTW which consists of (5.4) and path backtracking [134]. The path Pú is a hard alignment as

it assigns exactly one phoneme to each audio frame. While a hard alignment is required to infer

phoneme onsets at test time, the soft alignment provided by (5.4) and (5.7) can be used to inform

the separation model at test time in order to have the same behaviour as during training. The

estimated phoneme onset is the start time of the first frame it has been assigned to. An example

of the scores and a DTW path is shown in Figure 5.3.
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Figure 5.3: Example of a score matrix S = [sm,n]m,n with optimal DTW path in red which assigns
one phoneme to each audio frame.

5.3.3 The separation model

This part consists of the source separation model Open Unmix [186]. The input is the combined

text and audio representation (cf. 5.3.2) from which the estimate V̂ œ R
F ◊N
Ø0 of the singing voice’s

magnitude spectrogram is computed. The model comprises a fully connected layer with tanh

activation, three layers of BLSTM with a skip connection, and two fully connected layers with

ReLU activation. The output is multiplied with the mixture magnitude spectrogram X and yields

V̂. The architecture details are visualized in Figure 5.2. In order to obtain the vocals estimate in

the time domain, V̂ is combined with the mixture phase and an inverse STFT is applied. In this

study, we do not consider additional models to estimate the other sources because the focus is on

the e�ect of text-information for the vocals estimate.

The estimated vocals magnitude
qF

f=1 v̂f,n for each time frame n can be used as a Voice

Activity Detector (VAD). If the magnitude is below a threshold, it can be assumed that no voice is

active in the given frame. At test time, the scores of phoneme tokens that represent silence between

words (cf. Section 5.4.2) can be set to a high value for such frames before applying DTW. This

reduces the probability that phonemes are assigned to frames without vocals which can happen

especially on long instrumental parts.

5.3.4 Joint vs. sequential approach

The model described above performs separation and alignment jointly. However, it can be benefi-

cial for the separation quality to perform these tasks sequentially. For a sequential approach, two

di�erent, specialized versions of the model are employed. The first one (alignment model) corre-

sponds exactly to the model described above. It is responsible for the alignment, which is learned

through the separation objective as described. It is trained first and provides the hard alignment

paths Pú for the second version (separation model) which is responsible for the separation and does

not have an alignment system. We denote representations in the separation model with a tilde˜.

The aligned text representation C̃ is obtained by assigning an element of H̃ to each audio frame

using Pú (cf. Figure 5.2 and 5.3). During training and testing of the separation model, the text

and audio sequences are fed to both the encoders of the alignment model and the encoders of the

separation model (cf. Figure 5.2). The encoders of the separation model can learn representations

H̃ and G̃ dedicated exclusively to the separation task. In contrast, the representations in the
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alignment model and the model for a joint approach have to enable the alignment as well.

5.4 Data annotation and training details

In order to obtain training and testing data for text-informed singing voice separation, we annotated

the most popular singing voice separation dataset, MUSDB [151], with line level aligned lyrics and

additional information about the vocals as explained in Section 5.4.1. We detail the training data

and procedure in Section 5.4.2 and a study on pre-training and attention is presented in Section

5.4.3.

5.4.1 Annotations of the MUSDB corpus

The dataset comprises 150 songs and is split into a training partition with 100 songs, of which

96 have English lyrics, and a test partition with 50 songs, of which 45 have English lyrics. We

transcribed the English lyrics manually by listening to the isolated vocals.

The songs were divided into sections of lengths between 3 and 12 seconds. The priority when

choosing the section boundaries was that they correspond to natural pauses and do not cut vocal

sounds. Most of the sections do not overlap, some have an overlap of one second. For each section,

we annotated the start and end time, the corresponding lyrics as well as a label indicating one of

the following four properties:

(a) only one person is singing,

(b) several singers are pronouncing the same phonemes at the same time (possibly singing di�erent

notes),

(c) several singers are pronouncing di�erent phonemes simultaneously (possibly singing di�erent

notes),

(d) no singing voice.

Di�erentiating between singing voice examples with these properties allows for a more thorough

analysis of the separation results and one could exclude certain segments from the training set, if

desired. Segments that are labeled with the property (b) or (c) do not necessarily have this property

over the whole segment duration. As soon as somewhere in a segment several singers are present,

label (b) was assigned; as soon as they sung di�erent phonemes somewhere at the same time, label

(c) was assigned. Property (a) and (d) are valid for the entire segment. Furthermore, segments

with property (c) can contain either some (lead) singer(s) singing some words in the presence of

background singers singing long vowels such as ’ah’ or ’oh’ or they can contain multiple singers

who sing di�erent words at the same time. In the latter case, it was very di�cult to understand

the lyrics and to decide in which order to transcribe words or phrases sung simultaneously. We

marked these segments and excluded them from our training and test data. In some di�cult cases,

e.g. shouting in metal songs or mumbled words, where the words are barely intelligible, we made

an e�ort to make the transcriptions as accurate as possible phonetically and did not prioritize

semantically meaningful phrases.

We believe that these annotations are a valuable resource for research on several tasks such as

automatic lyrics alignment and transcription, text-informed singing voice separation, and singing
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voice analysis. Therefore, we make them publicly available2.

5.4.2 Training details

We use 82 songs (2289 segments with total length of 4.6 hours) of the annotated MUSDB training

set for training. The remaining 14 songs are used as a validation set (487 segments with 0.94

hours total length) for early stopping. The audio signals were downsampled to 16 kHz. As for the

original Open Unmix model [186], training is done on short segments to prevent learning di�culties

with backpropagation through time [211]. This does not prevent the model to process longer

sequences at test time. Preliminary experiments (cf. Section 5.4.3) showed that the attention

mechanism requires pre-training with mixtures containing speech signals. We found that pre-

training on speech-music mixtures for 66 epochs enables subsequent training on singing voice

plus accompaniment mixtures. We use speech recordings sampled at 16 kHz and word level text

transcripts from the TIMIT database [53]. The speech is mixed with instrumental music retrieved

from Youtube with a SNR uniformly drawn from [≠8, 0] dB. In total, the speech set consists of

4320 mixtures, which are between 2 and 8 seconds long and have a total length of 4.9 hours.

All words in the transcripts are translated into phonemes using the CMU LOGIOS Lexicon

Tool3. Hence, there is no guarantee that the phonetic transcription always reflects the actual

word pronunciation in the recordings accurately. We add a space token between each word that

represents potential silence in the vocals. Examples without vocals are annotated with only the

space token as lyrics.

The model is trained with the objective to minimize the L1 distance between the estimated and

true vocals magnitude spectrogram, V̂ and V respectively. The Adam optimizer [90], a learning

rate of 0.001 and a batch size of 16 are used. A STFT with a Hann window of length 512 samples

(32 ms) and a hop size of 256 samples (16 ms) is applied to compute the spectrograms. The learning

rate is multiplied by 0.3 after 80 consecutive epochs without improvement of the validation loss

and training is stopped after 140 consecutive epochs without improvement. Following the Open

Unmix procedure, additive mixtures are produced for training by sampling the stems bass, drums,

and others (as defined by MUSDB) randomly from di�erent tracks, scaling them by a factor

randomly drawn from [0.25, 1.25] and adding them to a vocals segment scaled by a factor drawn

from [0.25, 0.9].

5.4.3 Study on pre-training and attention

In order to illustrate the e�ect of pre-training on speech-music mixtures, we train the proposed

model with and without pre-training. To test the e�ectiveness of the proposed attention mecha-

nism, we also train the model with a conventional attention mechanism [118] (applying the softmax

operation in (5.6) on the scores S = [sm,n]m,n instead of the accumulated scores D) for comparison.

The resulting attention weights matrices for the four studied scenarios are shown in Figure 5.4.

Without pre-training on speech, neither of the attention mechanisms learn an alignment for

singing voice. With pre-training, both attention mechanisms learn some correspondence between

audio and text, but only the proposed mechanism provides a sharp and nearly monotonic alignment.

We can look at the di�erences between the speech and singing voice data used for training in order

to understand why the attention mechanism initially requires speech data. The speech-music

2https://doi.org/10.5281/zenodo.3989267
3http://www.speech.cs.cmu.edu/tools/lextool.html
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Figure 5.4: Attention weight matrices A = [–m,n]m,n for four di�erent scenarios. Darker colors
represent higher values, all values are in [0, 1].

mixtures have more accurate text transcripts, a lower SNR (making the task more di�cult and

thus the side information more valuable), a smaller voice pitch range, and more phonemes are

uttered in a given time interval compared to singing voice. Also, word pronunciations are altered

in singing voice for artistic reasons. We conducted various additional experiments with lower SNRs

in the training examples using both the MUSDB data and singing voice recordings with accurate

phoneme transcriptions [35]. In none of the settings did the attention mechanism train as desired.

Therefore, the pitch range, phoneme rate, and uniform pronunciation in speech are likely to be the

factors that enable the proper training in the considered limited data setting. A possible reason

for the sensitivity to initialization is that the separation task can be learned by the model even

without learning the alignment as discussed in the end of Section 5.2.2.

The advantage of computing the attention weights for each audio frame independently from the

other frames while still encouraging monotonicity can be seen in the bottom right plot of Figure

5.4: Although some phonemes are wrongly assigned to some early frames without singing, this

mistake does not impede the correct monotonic alignment at later frames.

5.5 Evaluation of lyrics alignment

We explain the experimental design for phoneme and word level lyrics alignment in Section 5.5.1

and present and discuss the results in Section 5.5.2.

5.5.1 Experimental design

Each test song is processed in full length at once by the model, so that no segmentation of audio

and text is required, i.e. DTW is done on the score matrix S = [sm,n]m,n for the whole song.
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Phoneme level alignment

We use the NUS-48E Sung and Spoken Lyrics Corpus [35] to assess phoneme level lyrics alignment.

It is a collection of 48 solo singing recordings4 of length between 53 seconds and 3.5 minutes with

manually transcribed phonemes and their time stamps. 12 amateur singers sing 4 English songs

each, the set comprises 20 unique songs. In order to evaluate phoneme alignment on mixtures, we

mix each singing recording with a di�erent instrumental accompaniment of a song of the MUSDB

test set.

We train the proposed model as explained in Section 5.4.2 and call it JOINT1. Then, we test

if some modifications regarding the training data can improve phoneme alignment. Since pre-

training on speech data enabled learning the correspondence between phonemes and audio, speech

data might also be beneficial when continuing training on singing voice. Therefore, we add 1000

speech-music mixtures to the MUSDB training data and call the model trained this way JOINT2.

For training of the next model, we also add silence to the MUSDB vocals segments before mixing

them with the other stems which results in longer instrumental sections in the training examples.

This increases the amount of audio frames that correspond to the space token and potentially

helps learning a better acoustic model for non-vocal frames. The idea is inspired by Gupta et al.

[64] who identified acoustic modeling of non-vocal frames as a crucial aspect of automatic lyrics

alignment. Specifically, each vocals signal is zero-padded to length 11 seconds. Padding is done

for 50% of the signals at the start and for 50% at the end. The model trained with added silence

and added speech is called JOINT3. We also train a model only on speech-music mixtures for

comparison. It is called JOINT-SP.

Thereafter, we compare the best performing model from the study above to two baselines

using both solo singing and mixtures as audio signals. The first one is the Montreal Forced

Aligner (MFA) [122] (cf. 5.2.1) which is a GMM-HMM. The MFA performs acoustic modeling

and alignment iteratively and processes the training and test data combined. It is informed by the

singer identity of the test songs and performs speaker adaptation. The second baseline is a deep

learning model trained with the CTC loss [59]. It consists of three BLSTM layers with 256 hidden

units followed by a linear layer mapping to the output size of 44 units (number of phonemes plus

CTC’s blank token). This architecture is inspired by the work in [198]. After a comprehensive

hyperparameter search, we found that the best performance on solo singing is obtained using 13

MFCCs (frame sise 256, 50% overlap) plus their deltas as input features. On mixtures it was best

to use Mel-spectrograms (frame sise 512, 50% overlap) with deltas and delta-deltas as inputs. We

call these versions CTC-MFCC and CTC-MEL, respectively. The model is trained with batch

size 1 and a learning rate of 0.001. Both baselines are trained on our MUSDB training set. They

are trained on mixtures for the evaluation on mixtures and on the clean vocals stems for the solo

singing evaluation. Pre-training or including speech data or adding extra silence did not improve

their performance.

Word level alignment

We evaluate word level lyrics alignment on the Hansen [66] and the Jamendo lyrics [182] dataset.

They are widely used for word alignment evaluation on mixtures and comprise 10 and 20 western

pop songs in English language, respectively. Also, they have been used in the Music Information

4We excluded song 09 of singer ADIZ due to incorrect annotations
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Retrieval Evaluation eXchange (MIREX) 2019 lyrics alignment task5, facilitating comparison be-

tween the proposed method and the two best performing methods which were proposed by Gupta

et al. (GU) [64] and Stoller et al. (ST) [182] reviewed in section 5.2.1.

While word alignment can be considered as less di�cult than phoneme alignment because

it is coarser, these two datasets are more challenging than the one we have at our disposal for

phoneme alignment evaluation. The reasons are that the accompaniment is correlated with the

voice, they contain longer instrumental sections such as intros or solos, and the transcripts are

partly incomplete as some vocal sounds such as ’ah’ or ’oh’ are sometimes neglected. Therefore,

we also test using the vocals estimate V̂ as a VAD: when the estimated total vocal magnitude is

lower than 20 for a time frame, it is assumed that it is a non-vocal frame and the score s of all space

tokens is set to the maximum score obtained for the given song. This method is called JOINT3-

VAD. The threshold was selected empirically on the MUSDB test set by visual inspection of the

vocals magnitude for some examples. However, the alignment results have a marginal sensitivity

regarding the exact threshold value as will be shown in Section 5.5.2 (cf. Figure 5.6).

5.5.2 Results and discussion

Phoneme level alignment

The results of the experiment on training data are shown in Table 5.1. The evaluation metrics

are the mean and median Absolute Error (AE), which is the absolute di�erence between the true

and estimated onset averaged over all phonemes of a test song, and the Percentage of Correctly

Aligned Segments (PCAS) [52]. In this context, segments are the signal parts between onset time

stamps and each segment is labeled with one phoneme. The PCAS measures the percentage of

overlap of ground truth and estimated segments over the whole song. The AE compares onsets

which are point estimates and does not take the phoneme duration into account whereas the PCAS

tells which percentage of the audio signals is labeled with the correct phoneme. This is especially

critical when the alignment is used for other downstream tasks such as informed separation in our

case. Adding speech examples (+sp.) improves all evaluation metrics. There is less variance in

the acoustic realisation of a phoneme in speech signals than in singing, which facilitates learning

the relation between audio and phoneme labels statistically. Adding silence (+sil.) reduces the

mean AE more than the median AE, and slightly improves the PCAS. As observed in [64], it helps

recognizing non-vocal frames and makes the alignment more robust. Training only on speech-

music mixtures (JOINT-SP) does not allow to align phonemes on singing voice. As a result of this

study, we use the model JOINT3 for comparison with other methods on phoneme and word level

alignment.

In Table 5.2, JOINT3 is compared to the baselines MFA, CTC-MFCC, and CTC-MEL. The

proposed method outperforms the baselines on solo and mixed singing voice. Note that the base-

lines have been trained on mixtures for the evaluation on mixtures (cf. 5.5.1). The fact that

JOINT3 works well also on mixed singing, even with low SNRs shows the e�ectiveness of the voice

separation component inherent in our alignment approach. In practice, the baselines could be used

with voice separation as pre-processing step. However, it is likely that performance is worse than

on solo singing. The PCAS of the proposed approach is above 80 % for SNRs of 0dB and higher.

This makes it a suitable method to produce phoneme alignments for datasets on which models for

other tasks are trained.

5https://www.music-ir.org/mirex/wiki/2019:Automatic_Lyrics-to-Audio_Alignment_Results
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Method Training
data

mean
AE [s]

median
AE [s]

PCAS
[%]

SNR
[dB]

JOINT-SP sp. 27.9382 26.5665 1.76

solo
singing

JOINT1 MUSDB 0.0884 0.0158 81.49
JOINT2 MUSDB+sp. 0.0611 0.0149 85.91
JOINT3 MUSDB+sp.+sil. 0.0573 0.0149 85.94

JOINT-SP sp. 26.0748 23.7819 3.62

5
JOINT1 MUSDB 0.1122 0.0173 79.13
JOINT2 MUSDB+sp. 0.0638 0.0160 84.41
JOINT3 MUSDB+sp.+sil. 0.0631 0.0158 84.66

JOINT-SP sp. 33.4086 30.8661 0.97

-5
JOINT1 MUSDB 0.2639 0.0360 68.91
JOINT2 MUSDB+sp. 0.1634 0.0254 75.38
JOINT3 MUSDB+sp.+sil. 0.1425 0.0247 76.02

Table 5.1: Phoneme alignment results on NUS-48E corpus. Values are the mean over the test set.
AE=Absolute Error, PCAS=Percentage of Correctly Aligned Segments.

Method mean
AE [s]

median
AE [s]

PCAS
[%]

SNR
[dB]

JOINT3 0.057 0.015 85.94
solo

singing
MFA 0.073 0.030 77.94

CTC-MFCC 0.071 0.034 76.49
JOINT3 0.063 0.016 84.66

5MFA 1.468 1.089 46.92
CTC-MEL 0.198 0.078 57.61
JOINT3 0.077 0.018 82.17

0MFA 4.523 3.756 25.61
CTC-MEL 0.513 0.267 46.94
JOINT3 0.143 0.025 76.21

-5MFA 7.079 6.172 10.03
CTC-MEL 1.590 1.087 30.58

Table 5.2: Phoneme alignment results on NUS-48E corpus. Values are the mean over the test set.
AE=Absolute Error, PCAS=Percentage of Correctly Aligned Segments.

Comparing CTC-MFCC and JOINT3 shows that DTW-attention is more e�cient in this limited

data setting than CTC training to learn an acoustic model for alignment. This may be surprising

because DTW-attention performs only a DTW forward pass (followed by finding the locally, frame-

wise optimal solution as approximation of the globally optimal path) during training. In contrast,

the CTC loss implements a forward-backward algorithm to find all alignment paths [59]. Therefore,

it is likely that the CTC loss can find optimal alignment paths more often than DTW-attention

during training.

However, at training time the goal is not to find optimal alignment paths. The goal is rather to

encourage the acoustic model to produce posteriorgrams or score matrices which are accurate with

respect to frame/label alignments. From a theoretical perspective, the CTC loss does not have an

advantage over the proposed DTW-attention regarding this training goal. There is an intuitive

explanation why DTW-attention can learn score matrices with better time-synchronization using

gradients which are backpropagated from the separation network.

The objective of the CTC loss is to maximize the likelihood of the target label sequence

(phonemes in our case) given acoustic input features. In order to compute the likelihood of the
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target label sequence, it marginalizes over all possible alignments [59, 65] which are found using

the forward-backward algorithm. Therefore, the alignment that provides the correct frame/label

synchronization is not preferred over other alignments which output label probabilities delayed (or

too early if bidirectional RNNs are used). The internal memory enables the model to remember

acoustic states and output the corresponding phoneme probabilities at arbitrary frames. The CTC

loss can be minimized as long as the order of the phonemes is correct. Thus, the CTC loss does

not maximize the likelihood of any particular alignment. This issue has also been discussed by Sak

et al. [159]. It is probably also the reason why Stoller et al. [182] add a constant delay of 180 ms

to the alignments of their CTC based model.

On the other hand, in the proposed method there is a strong incentive to learn the correct

frame/label synchronization: if the synchronization is bad, the information coming from the

phoneme labels is not useful for the separation network. Therefore, the gradients from the separa-

tion objective are a strong learning signal for DTW-attention leading to accurate alignments that

can be superior to the ones obtained with the CTC loss in the limited data setting considered in

the proposed work.

Word level alignment

The word alignment results on the Hansen (H) and Jamendo (J) datasets are shown in Table 5.3.

The metrics are the mean and median Absolute Error (AE) (explained in 5.5.2) and the percentage

of correctly aligned words within a tolerance of 0.3 seconds.

Method Songs for
training

mean
AE [s]

median
AE [s]

% within
0.3s

H J H J H J
ST [182] (SV) 39232 0.39 0.38 0.09 0.10 88 87
ST [182] (MV) 39232 - 0.82 - 0.10 - 85

GU [64] 3913 0.10 0.22 0.04 0.05 97 94

JOINT3 82* 1.47 1.86 0.06 0.10 83 80
JOINT3-VAD 82* 0.79 0.88 0.06 0.08 85 81

*plus 4.9 hours of speech music mixes (equals the length of 98 songs of 3 minutes)

Table 5.3: Word alignment results on the Hansen (H) [66] and Jamendo (J) [182] datasets. Values
are the mean over test songs.

A boxplot of the AEs on the Jamendo dataset is shown in Figure 5.5. The mean and median

values in the boxplot are taken over all AEs on the whole test set while the values in Table 5.3 are

taken per song and are then averaged over all songs following the procedure of MIREX.

Using the VAD reduces the mean AE and barely influences the median AE and overall error

distribution. It can be seen in Figure 5.5 that the VAD decreases the largest errors. This happens

because using VAD reduces the number of phonemes that are wrongly assigned to frames of long

instrumental parts. In Figure 5.6, boxplots of the absolute alignment errors are shown for JOINT3-

VAD for di�erent thresholds in the VAD to decide weather a frame contains singing voice or not.

It can be seen that the exact threshold value a�ects the results only marginally.
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Figure 5.5: Boxplot of the absolute alignment errors on the Jamendo dataset [182]. The boxes
extend from the first to the third quartile. The whiskers extend from the first to the 99th percentile.

Figure 5.6: Boxplot of the absolute alignment errors on the Jamendo dataset [182] for method
JOINT3-VAD for di�erent VAD thresholds. The boxes extend from the first to the third quartile.
The whiskers extend from the first to the 99th percentile. The medians are shown as blue lines,
the means are shown as green ’x’.

The baseline ST [182] has been evaluated for training and testing on Separated Vocals (SV) and

Mixed Vocals (MV) by its authors. In Table 5.3 it can be seen that the baselines used considerably

more training data than the proposed method. They have a lower mean AE than our method

while the median AE is roughly the same. Figure 5.5 shows that the overall error distribution of

the proposed method is very similar to the state-of-the-art method GU [64] with the di�erence

that some larger errors are produced which increase the mean AE. We observed that those outliers

occur due to two reasons. Firstly, our method cannot cope well with vocal sounds that are not

included in the given lyrics transcript because any vocal sound in an audio frame makes the model

assign a higher score to the phonemes than to the space token (cf. equation (5.3)). This can result

in assigning the first phoneme of the word after a non-transcribed sound to the frame of this non-

transcribed sound and hence to predicting the onset too early. Secondly, the VAD does not capture

all non-vocal segments perfectly and the model might confuse similar sounding instruments with

vocals and assign high scores to phonemes instead of silence, which influences the DTW path. The

baseline models learn more advanced acoustic models (triphone and genre-specific [64] or character

level [182]) on more training data than our method. We think that this is the reason why they are

more robust to those failure modes. They were the first to produce mean AEs below one second

in the MIREX lyrics alignment task on mixtures. Considering the error boxplots in Figure 5.5,
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the proposed method can be seen as a less data intensive alternative to the baselines. This is

especially interesting for alignment of lyrics in other languages than English for which training

data are scarcer.

To conclude the alignment evaluation, it can be said that the proposed method is able to align

phonemes accurately on mixed singing voice when accurate transcripts are provided. Performance

decreases when challenges such as long instrumental parts or inaccurate transcripts are faced,

but performance is not far from the state-of-the-art on word level alignment in this case while

less training data are used. DTW-attention trained with the separation objective yields better

alignments than CTC training in the considered limit data setting.

5.6 Evaluation of singing voice separation

We explain the experimental design in Section 5.6.1 and present and discuss the results in Sec-

tion 5.6.2.

5.6.1 Experimental design

We use the 45 songs of the MUSDB [151] test set that are in English language along with their

text transcripts for the separation evaluation. In total, our test set comprises 1461 segments with

a total length of 2.9 h. The audio signals were downsampled to 16 kHz.

Open Unmix reference and joint approach

As a reference, we train the original Open Unmix model [186] on our MUSDB training data and

call it UMX1. We also train it with the exact same training data and procedure as the best

alignment model, JOINT3, i.e. pre-training on speech, adding silence to vocals, and adding speech

data when training on singing voice (cf. Section 5.5.1), and call it UMX2. In order to evaluate

the joint alignment and separation approach, we evaluate JOINT3 which was the version with the

best alignment performance as shown in Section 5.5.2.

Sequential approach

For the sequential approach (cf. section 5.3.4 and Figure 5.2), we use JOINT3 as the alignment

model, providing alignments for a dedicated text-informed separation model which we call SEQ.

Two baselines (BL) are provided. They use the exact same model as SEQ but, instead of one-hot

vectors representing phonemes, they get di�erent side information. For SEQ-BL1, every element in

Y is the same one-hot vector and the given alignment path assigns the last element of H to all audio

frames, i.e. pn = (M, n)’n. This means that no information about the singing voice is provided

to SEQ-BL1. The second baseline, SEQ-BL2, receives the alignments provided by JOINT3 but all

phonemes are represented with the same one-hot vector and the space token (silence) is represented

with a di�erent one-hot vector. This means the information of aligned phonemes is reduced to

voice activity information for SEQ-BL2. Since the two baselines have the exact same architecture

and number of parameters as SEQ, the e�ect of text as a side information can be evaluated.
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Evaluation on mixtures with fixed SNR

For the experiments above, all models are evaluated with the original mixtures of the MUSDB

dataset. Beyond that, we evaluate some models again and, this time, we mix the voice and

accompaniment with a fixed SNR of 0, -5, and -10 dB. The SNR is computed on each test segment

individually. This experiment allows us to investigate the e�ect of text as a side information on

mixtures with di�erent degrees of di�culty for singing voice separation. As reported in [113], lower

SNRs usually decrease the separation quality.

5.6.2 Results and discussion

In Table 5.4, the separation evaluation scores are presented. The metrics SDR, SIR, and SAR [202]

are computed on one second long non-overlapping evaluation frames using museval with BSSEval

v4 [188] following the Signal Separation Evaluation Campaign [185]. We di�erentiate between

the three annotated vocals properties of the test segments regarding the number of singers and

the simultaneous presence of di�erent phonemes (cf. Section 5.4.1). The presented values are

the medians over all evaluation frames within a property category. Higher values indicate better

performance. To give an idea of the scores’ distributions, boxplots are shown for SDR, SIR, SAR in

Figures 5.7, 5.8, and 5.9 respectively. Beyond, scores of additional metrics are shown in Table 5.5.

The Predicted Energy at Silence (PES) measures the energy of the estimated vocals in evaluation

frames where the true vocals are all-zero, and the Energy at Predicted Silence (EPS) measures

the energy in the true vocals for evaluation frames where the estimate is all-zero (cf. Section

4.4). The presented values are the mean over all evaluation frames and lower values indicate

better performance. The SDR, SAR, SIR are not defined for frames with a silent estimate or

ground truth, so that the PES and EPS complement them for a complete evaluation. Note that a

comparison of the presented performance scores with other models trained and tested on MUSDB

is not straightforward because we were limited to the songs with English lyrics for training and

testing.

a) b) c)

Method Training data Side info Y SDR SIR SAR SDR SIR SAR SDR SIR SAR

UMX1 MUSDB - 4.32 8.62 6.73 4.45 8.73 6.56 3.61 8.38 5.39

UMX2
MUSDB
+sp.+sil.

- 4.06 8.62 6.22 4.31 8.30 6.56 3.85 7.87 5.69

JOINT3
MUSDB
+sp.+sil.

phonemes 3.69 7.38 6.51 3.92 7.29 6.51 3.92 7.29 6.17

SEQ-BL1 MUSDB constant 4.77 9.52 7.16 4.93 9.39 6.91 4.20 9.06 5.77

SEQ-BL2 MUSDB voice activity 4.74 9.18 6.83 4.56 9.14 6.46 3.75 8.62 5.28

SEQ MUSDB
aligned

phonemes
5.08 10.41 6.82 4.89 10.21 6.51 3.86 9.82 5.03

Table 5.4: Separation evaluation results in dB. Values for SDR, SIR, SAR are medians over eval-
uation frames, higher values are better. The di�erentiated vocals categories are a) one singer, b)
2+ singers singing the same phonemes simultaneously, c) 2+ singers singing di�erent phonemes
simultaneously.
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Method Training data Side info Y PES EPS

UMX1 MUSDB - -72.26 -89.21

UMX2 MUSDB+sp.+sil. - -75.74 -97.06

JOINT3 MUSDB+sp.+sil. phonemes -84.09 -81.96

SEQ-BL1 MUSDB constant -93.57 -87.45

SEQ-BL2 MUSDB voice activity -101.39 -80.51

SEQ MUSDB
aligned

phonemes
-95.63 -85.98

Table 5.5: Separation evaluation results of frames containing silent true or predicted sources in
dB. Values for PES and EPS are the mean over evaluation frames and lower values are better.

Open Unmix reference and joint approach

The evaluation scores of UMX1 are lower than those reported for the state-of-the-art version

of Open Unmix [186]. The reason is the di�erence in training data such as the amount (we

excluded non-English songs and multi-text segments), sampling rate, number of channels, and

augmentation. In the original procedure, di�erent random segments of 6 seconds length are cut

out of the tracks at every epoch, whereas we are bound by the segment-wise aligned lyrics. However,

this simulates the scenario which we investigate in this work: a limited amount of available audio

data. Also, we focus on one model instance with vocals as target in order to investigate the e�ect

of text as side information for the vocals estimate. In [186], four specialized model instances are

used to estimate the four MUSDB targets which are combined using generalized Wiener filtering.

UMX2 performs worse than UMX1. This indicates that the training data and process used for

JOINT3, which enable the model to learn an alignment, decrease the separation performance.

The evaluation scores for JOINT3 show that the model has successfully learned the separation

task jointly with the alignment. However, the evaluation scores are lower than for the original

Open Unmix model (UMX1 and UMX2). In the joint approach, the two encoders have to learn

representations that enable both alignment and separation, which is worse for the separation than

dedicated representations. JOINT3 was evaluated using the soft alignments provided by DTW-

attention. However, using hard alignments of DTW instead has only marginal impact on the

results. In fact, DTW-attention selects the same phoneme as the DTW path for 84% of all frames

on the MUSDB test set, if we consider the phoneme with the highest weight as the one being

selected, which is a reasonable assumption given the sharpness of the distribution (c.f. Figure 5.4).

We conclude that joint alignment and separation is possible but not beneficial for the separation

quality.

Sequential approach

The evaluation scores of the sequential approach SEQ are better than those for the joint approach,

JOINT3. This is an expected result because dedicated representations can be learned by SEQ as

discussed above. They are also better than those for the original Open Unmix model trained on the

same data, UMX1. This improvement has two potential reasons: Firstly, the proposed model has

more capacity because of the two encoders and, secondly, it uses text as additional information. We

would like to know to which extent the performance increase is due to the text information. This

can be seen when comparing SEQ to SEQ-BL1 and SEQ-BL2 which have all the same capacity.

The text-informed model SEQ improves the SIR across all vocals properties compared to the

less informed baselines. When only one singer is present (property a)) also the SDR is improved
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through the text information. The SAR is decreased when using text information with the decrease

becoming stronger over categories a), b), and c). This shows that text information is most useful

when only one person is singing. In general, the e�ects of using text are small in terms of the

objective metrics which is illustrated by the boxplots in Figures 5.7, 5.8, and 5.9. We discuss the

limitations further below. SEQ-BL2 has the lowest PES, which means it performs best on frames

without vocals and thus uses the provided voice activity information. SEQ has the second lowest

PES which indicates that it also uses the vocal activity information inherent in aligned text.

Figure 5.7: Boxplots of the SDR scores for the three vocals categories. Each data point is the score
of one evaluation frame of 1 s length. The boxes extend from the first to the third quartile. The
whiskers extend from the fifth to the 95th percentile. The medians are shown as blue lines, the
means are shown as green ’x’.
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Figure 5.8: Boxplots of the SIR scores for the three vocals categories. Each data point is the score
of one evaluation frame of 1 s length. The boxes extend from the first to the third quartile. The
whiskers extend from the fifth to the 95th percentile. The medians are shown as blue lines, the
means are shown as green ’x’.

Figure 5.9: Boxplots of the SAR scores for the three vocals categories. Each data point is the score
of one evaluation frame of 1 s length. The boxes extend from the first to the third quartile. The
whiskers extend from the fifth to the 95th percentile. The medians are shown as blue lines, the
means are shown as green ’x’.
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In order to evaluate an additional aspect of the separated singing voice signals, we automatically

transcribe the lyrics from the voice estimates for the MUSDB test set using the state-of-the-art sys-

tem proposed by Demirel et al. [31] and compute the Word Error Rate (WER). The transcription

system was trained on monophonic solo singing recordings of the Smule Sing! 300x30x2 dataset [1]

and uses a language model built from lyrics [31]. The results in Table 5.6 show that the text-

informed model SEQ produces a lower WER in each vocals category than the baselines. This

means that the given phoneme information helps to preserve the characteristic phoneme proper-

ties in the separated voice signals.

Method Side info Y a) b) c)
Mixture 76.06 78.44 89.24

SEQ-BL1 constant 68.30 70.88 83.25
SEQ-BL2 voice activity 63.34 66.81 79.00

SEQ aligned phonemes 52.76 51.81 64.29
True vocals 37.83 30.85 58.45

Table 5.6: Word Error Rate [%] of the lyrics transcription method proposed in [31].

An illustrative example is given in Figure 5.10. In the shown segment, a female singer sings the

words ”right there almost got you”. The phonetic transcription of this line using 2-letter ARPAbet

notation (cf. Section 2.2.2) is ”> R AY T > DH EH R > AO L M OW S T > G AA T > Y

UW >”, where ’>’ denotes the space token. The unvoiced ’s’ sound (in ”almost”) is missing in the

estimate of the non-informed model (SEQ-BL1) but when using the text (SEQ) the model is able

to separate it. Unvoiced sounds with high energy at high frequencies are di�cult to di�erentiate

from drum sounds such as cymbals, which makes text a valuable extra information. It can also

be seen that the harmonic structure of the vowels is separated more clearly when using text. This

leads to a clean sound and reduces interferences. However, it can also lead to artefacts, especially

when multiple singers are present. Listening examples are provided online6.

Relevance of the phonetic prior information

In order to test what kind of information is derived from the phoneme sequence by the model

SEQ, we feed uniform white noise generated in the time domain as input to the audio encoder

at test time. We use phoneme sequences of the MUSDB test set as input to the text encoder.

The alignment information of the phonemes with respect to their corresponding audio mixture,

computed by our alignment model JOINT3, is also provided. In the audio examples4, it can be

observed that the model filters the white noise so that the given phonemes become audible. The

experiment shows that the model learned the spectral characteristics of the phonemes and how to

use this information for the voice estimation. This explains why the separation with SEQ leads to

a lower WER compared to the baselines.

In a second experiment, we test how much the model SEQ relies on the text information if it is

conflicting with the observed audio mixture. To this end, we exchange some phonemes in the text

after the alignment has been obtained with the original text. Using the example in Figure 5.10,

we replaced the ’s’ in ’almost’ with an ’o’ so that its phonetic transcription became ”AO L M OW

OW T” and we replaced the last word ’you’ by ”S S”. In Figure 5.10, it can be seen that the vocals

estimate changes accordingly (SEQ (altered text)). The high frequency energy of the ’s’ sound is

6https://schufo.github.io/plla_tisvs/
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Figure 5.10: Magnitude spectrograms of singing voice estimates obtained with di�erent types of side
information. SEQ-BL1: Meaningless side information, SEQ: aligned original phoneme sequence,
SEQ (altered text): aligned modified phoneme sequence. At the bottom right, the true vocals are
shown for comparison.

now missing where it was correctly estimated before (SEQ) for the word ’almost’. The spectral

characteristics of ’s’ are added in the last frames where the word ’you’ was actually pronounced

and where a clear harmonic structure was visible when the correct text was used (SEQ). We refer

the reader to the audio examples for better illustration. This shows that the text information

is actively used to estimate the voice and can even outweigh the information from the observed

mixture. This can lead to a better separation as shown above but it can also lead to artefacts when

the alignment or the transcription is inaccurate. Editing the phoneme sequence allows us to edit

the obtained singing voice signal. This can, for example, be useful to correct small pronunciation

mistakes.

Evaluation on mixtures with fixed SNR

In Table 5.7, the separation results evaluated on mixtures with manually fixed SNRs are shown.

The three annotated vocals properties of the test segments are di�erentiated and the values are the

median over evaluation frames within each vocals category (a, b, c). For all SNRs and all vocals

categories, the text-informed model SEQ achieves higher SIRs than both baselines. The SAR is

reduced when using text information on all SNRs. The improvement of the separation through

text becomes stronger when the SNR becomes lower. When the SNR is -10 dB also the SDR is

clearly improved, even on test segments with multiple singers (b and c). We can conclude that

text-informed singing voice separation is more beneficial in challenging conditions whereas it can
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lead to degraded performance in very easy conditions.

a) b) c)
Method SNR SDR SIR SAR SDR SIR SAR SDR SIR SAR
UMX1

0
8.00 12.65 10.60 7.16 11.87 9.75 4.90 10.35 6.93

SEQ-BL1 8.59 13.62 11.04 7.57 12.82 10.00 5.43 11.62 7.43
SEQ 8.36 13.77 10.27 7.34 13.04 9.51 4.94 11.73 6.43

UMX1
-5

4.45 8.47 6.93 4.08 8.12 6.18 2.51 6.15 4.17
SEQ-BL1 4.98 9.26 7.32 4.56 8.84 6.55 3.01 7.00 4.93

SEQ 5.03 10.06 6.83 4.66 9.76 6.29 3.08 7.95 4.10

UMX1
-10

0.91 4.01 3.46 0.81 3.39 2.42 0.03 0.65 1.78
SEQ-BL1 1.16 4.07 3.91 1.17 3.87 3.09 0.21 0.69 2.42

SEQ 1.75 6.09 3.38 1.86 5.83 2.87 0.94 3.13 1.74

Table 5.7: Separation evaluation results for mixtures with di�erent SNRs. All values are in dB.
Evaluation scores are medians over evaluation frames within a vocal category.

Limitations

The discussions above show that accurate phoneme alignment and correct transcripts are necessary

to achieve improvements through text. Otherwise, the vocals estimate will be degraded. In the

case of multiple singers singing multiple phonemes (category c), the text contains information only

about a part of the target vocals signal, which is defined as mixture of all voice sources in MUSDB.

Hence, the text-informed model SEQ as well as the model SEQ-BL2, which is informed by voice

activity information derived from aligned text, might suppress the background singers when the

lead vocals pause. Since the ground truth vocals contain all singers, this leads to lower evaluation

scores. However, it can also be seen as an advantage if only the lead vocals are the source of

interest. We refer the reader to the additional audio examples7 to illustrate the points discussed

above.

5.7 Conclusion

The goal of this chapter was to investigate to which extent singing voice separation with deep

neural networks can be improved through text information provided by lyrics transcripts. Since

lyrics are usually not aligned with the observed mixture signals, we proposed a joint approach to

phoneme level lyrics alignment and text-informed singing voice separation.

Experimental evaluation showed that phoneme alignment can benefit from the separation com-

ponent when the singing voice is mixed with other instruments. Moreover, the proposed alignment

method achieved competitive results on two word level alignment test sets although it used less

training data than state-of-the-art methods. This is partly due to the learning e�ciency of the

proposed DTW-attention mechanism compared to conventional approaches such as the CTC loss.

In order to improve the separation performance, lyrics should be aligned first and subsequently

be processed by a separation model. With this sequential approach, text information can help to

improve the separation quality. The proposed model uses phoneme information actively to shape

the spectral content of the voice estimates. This preserves the phonetic properties in the estimates

but can also lead to degraded performance in case of inaccurate alignments or transcripts. In

7https://schufo.github.io/plla tisvs/
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general, the improvement is most noticeable in terms of reduced interference from other sources.

Particular cases where text information is especially useful are low SNRs, mixtures with exactly

one singer, and ambiguous segments were the spectral content of the voice is similar to other

instruments.

However, the overall improvements through text are rather subtle and lead only to small im-

provements of objective evaluation metrics. At the same time, additional e�ort is required in order

to use the text e�ectively. Firstly, phonetically accurate transcripts must be obtained. Secondly,

they must be precisely aligned with the mixture to be separated. Therefore, it is not advisable to

use phoneme sequences by default as side information for singing voice separation. Nevertheless,

text is a valuable source of information for the separation of mixture segments which are di�-

cult to separate. Hence, we see specialized use cases for text-informed singing voice separation in

challenging separation projects.
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Chapter 6

Unsupervised Audio Source

Separation

Summary

In this chapter a novel unsupervised deep learning approach to audio source separation is proposed.

It exploits fundamental frequency information and parametric generative source models. A neural

network is trained to reconstruct the observed mixture as a sum of the sources by estimating

the source models’ parameters given their fundamental frequencies. At test time, soft masks are

obtained from the synthesized source signals. The experimental evaluation on a vocal ensemble

separation task shows that the proposed method outperforms learning-free methods based on

NMF and a supervised deep learning baseline. Integrating model-based knowledge in the form

of source models into a data-driven method leads to high data e�ciency: the proposed approach

achieves good separation quality even when trained on less than three minutes of mixture signals.

The chapter is based on the paper Unsupervised Audio Source Separation Using Differentiable

Parametric Source Models which is currently under review.
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6.1 Introduction

In this chapter, we consider a more challenging scenario where only mixtures – but no isolated

source signals – are available for training and the signals to be separated are produced by sources of

the same type. We exploit side information in the form of F0 estimates and integrate model-based

knowledge in the form of explicit source models in our separation approach. The motivation for

this work are the following two shortcomings of state-of-the-art supervised deep learning methods

for musical source separation such as [191, 28, 186].

Firstly, they are not able to separate homogeneous sources. By homogeneous sources we mean

sound sources of the same type which have the same sound production mechanism and the same or

at least an overlapping frequency range. Homogeneous sources are common in musical mixtures.

For example, there may be two guitars in a music group. Musical mixtures may also consist of only

one source type such as singing voice in a choir or violins in violin quartets. The separation methods

in [191, 28, 186] are able to separate all singing voices from an instrumental accompaniment but

provide only the mixture of these voices and do not further separate them into the di�erent singer

signals. Hence, such methods can neither be used to obtain only the lead vocals nor to separate

all singers of vocal ensembles or all instruments of violin quartets.

Secondly, they require training data with available ground truth, i.e. mixtures for which target

source signals are available in isolation. However, such isolated signals are di�cult, sometimes

impossible, to obtain for music mixtures as explained in Chapter 1. For example, vocal ensembles

usually perform with all singers being in the same room and are also recorded this way. Hence,

no separate signal for each singer is recorded. Special sessions may be arranged in order to record

signals in isolation [25], however, this is not only extremely costly but also leads to unnatural

conditions for the musicians.

Therefore, there is a need for separation methods that do not require ground truth signals for

training. Such methods may be learning-free or unsupervised.

Learning-free methods estimate all parameters directly from the test mixture [203]. Hence, they

do not require any training data. NMF [108] and its numerous extensions have successfully been

used for learning-free musical source separation [203]. Using side information such as musical scores

[45, 70] or fundamental frequency [40], NMF-based methods can separate homogeneous sources.

Unsupervised methods have a training stage and require only mixtures (no isolated sources)

for learning. At test time, their parameters are fixed. They have the potential to provide better

performance than learning-free methods while being less demanding regarding data than supervised

methods. Recently proposed unsupervised deep learning methods for audio source separation are

based on assumptions such as uncorrelated [213, 212] or non-homogeneous sources [137, 171].

Therefore, they are not applicable to music mixtures where sources are correlated and possibly

homogeneous.

We propose and evaluate a novel approach to unsupervised source separation with DNNs which

does not make such assumptions. It is hence also applicable but not limited to music mixtures.

The approach is inspired by the recent line of research which integrates signal processing models

in DNNs to incorporate domain knowledge [174, 42]. Each source is modeled with a di�erentiable

parametric source model. During training, the task of the DNN is to re-synthesize the observed

mixture as a sum of the sources by estimating the source parameters. Separation is achieved be-

cause the F0s for all sources are estimated from the mixture and assigned to the sources beforehand.

This can be done using methods such as [26, 165].
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Besides being unsupervised and able to separate homogeneous sources, the approach has further

advantages: high data e�ciency as well as parametric, hence interpretable and modifiable, source

estimates. The source code related to this chapter is available online.1

6.2 Related work

In this section we review work on homogeneous musical source separation, learning-free and un-

supervised source separation, and, finally, on the integration of signal processing models in deep

neural networks.

Homogeneous audio sources are not easily distinguishable in the time-frequency domain and

pose a permutation problem [72, 217]. While permutation-invariant training is used for super-

vised speech separation [217, 96], methods for musical homogeneous source separation exploit side

information such as F0 estimates [146, 40] or a musical score [58, 45, 70] to guide the separation.

Two deep learning approaches for supervised choir separation were proposed recently. In this

context, a choir is composed of four homogeneous sources: a soprano, alto, tenor, and a bass

singer. Petermann et al. [146] modified the conditioned U-Net [126] so that the target source can be

selected and separated using its F0 information. Results show that this leads to improved objective

separation quality compared to using non-informed source-specific models. However, ground truth

source signals are needed for training and they are rare for choir recordings. This motivated Gover

and Depalle [58] to synthesize choir singing from MIDI files and to use this synthetic data for

training of a score-informed DNN. However, when tested on real choir recordings, the model is

outperformed by the learning-free, score-informed NMF proposed in [45]. This shows that the

performance of supervised DNNs depends strongly on the quality and quantity of the training

data.

Therefore, learning-free methods are a powerful alternative in limited data settings. Several

separation methods based on NMF are learning-free and can exploit side information to separate

homogeneous sources. NMF approximates a spectrogram with a matrix product of two low-rank

matrices containing spectral templates and their activations, respectively [203]. Ewert and Müller

[45] proposed to initialize both templates and activations using musical score information. This

leads to improvements compared to random initialization. Using the score allows even to separate

notes played by the left and the right hand in piano recordings. Similarly, Hennequin et al.

[70] used a musical score to initialize the activations whereas the templates consist of parametric

frequency atoms. Durrieu et al. [40] formulated an advanced signal model using multiple NMF

decompositions. The predominant source is modeled with a source-filter model and all other sources

are captured by an unconstrained NMF. First, the F0 of the predominant target source is estimated

using the signal model. Then, the F0 is used to guide the separation. Nakamura and Kameoka

[136] proposed a powerful signal model combining NMF and harmonic-temporal clustering and

integrated a source-filter model. It allows for blind, learning-free separation of harmonic sounds.

A drawback of NMF-based methods is the low degree of flexibility because only a fixed number

of spectral templates is used to describe a signal. This limits their performance, especially when

inherent assumptions are violated.

Recently, e�orts have been made to make more flexible deep learning based source separation

also usable in cases where no mixture-target pairs are available for training. Most works focus on

creating learning targets artificially from mixtures or side information in order to train DNNs in a

1https://github.com/schufo/umss
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supervised way in the absence of real targets. Seetharaman et al. [171] obtain targets for singing

voice/accompaniment separation by clustering time-frequency bins of mixtures using several simple

perceptual cues. Hung et al. [81] obtain harmonic target masks from well-aligned musical scores

and further support the training process using score transcription models. Also deep clustering

models [72] have been trained for speaker separation without ground truth signals [33, 195]. The

targets are obtained by clustering the mixture based on spatial information. The methods above

yield good results but require substantial amounts of (unlabeled) training data and cannot separate

homogeneous correlated sources.

As an alternative, it has been proposed to train deep generative models on isolated source signals

to use them subsequently for source separation [137] or speech enhancement [110]. However, this

strategy is challenging for musical source separation because it requires a large amount of isolated

source signals and uncorrelated sources.

Lastly, mixture invariant training has been proposed recently in [213] and refined in [212] for

unsupervised learning of audio source separation without a need for artificial targets. During

training, the sum of two mixtures is given as an input and the DNN has to separate all sources so

that, given the respective optimal binary mixing matrices, the two mixtures can be reconstructed

individually. Since it is necessary that the sources are uncorrelated [212], this approach is not an

option for musical source separation.

The method proposed in this chapter uses F0 information to separate the (possibly homoge-

neous) sources like the learning free-methods in [45, 40] and the supervised methods in [146, 58].

It provides better performance than learning-free methods and does not require expensive labeled

data like supervised methods. Our learning strategy is fundamentally di�erent from other unsu-

pervised methods: it is not limited to uncorrelated sources like [212] and does not rely on artificial

source targets which require the availability of aligned scores [81], su�cient spatial information in

the mixture [195, 33], or non-homogeneous sources [171]. The proposed training objective is to

re-synthesize the mixture with di�erentiable parametric source models. The only assumptions are

that the number of sources is known and that their F0 can be estimated. In contrast to the unsu-

pervised methods reviewed above, the proposed one can separate homogeneous sources, requires

only a small amount of unlabeled data, and provides interpretable and modifiable source estimates.

There is a recent line of research that explores the combination of data-driven and knowledge-

based methods to take advantage of both paradigms [130, 174, 42]. The integration of di�erentiable

source models in the DNN-based source separation process is inspired by this model-based deep

learning research. Specifically related to our work are recent speech synthesis methods which use

di�erentiable parametric voice models and estimate their parameters using DNNs [208, 154]. We

use similar voice models but in a di�erent context. Engel et al. [42] implemented a code library

for di�erentiable digital signal processing and showed the advantages of model-based deep learning

for tasks such as synthesis, timbre transfer and dereverberation. The DNN architectures and the

di�erentiable signal processing implementations we use in our experiments are inspired by their

work. To the best of our knowledge, the proposed method is the first one that uses model-based

deep learning for musical source separation.

6.3 Proposed method

We observe the single-channel mixture x(t) =
qJ

j=1 vj(t) of J monophonic source image sig-

nals vj(t) where t œ {1, ..., T} indexes discrete time samples. Our goal is to estimate all source
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image signals vj . We propose a novel approach to train a DNN for this task without access to

any isolated source signals. The sources are modeled with di�erentiable parametric source models

which we describe in Section 6.3.1. The DNN estimates the source parameters given the F0 as

explained in Section 6.3.2. The objective of the unsupervised training strategy is to re-synthesize

the mixture. Details about training are given in Section 6.3.3 and an overview of the procedure is

presented in Figure 6.1.

Differentiable
generative

source
models

...
Synthesized

mixture

Magnitude STFT
reconstruction loss

Multi F0
estimation Source 1

Source 2

Source j

fundamental frequency (F0)
other synthesis parameters

F0-to-source
assignment

Mixture DNN

Figure 6.1: Overview of the proposed unsupervised training procedure of a Deep Neural Network
(DNN) for audio source separation.

At test time, the synthesized source signals can either be used directly as source estimates or

soft masks can be derived from them for Wiener filtering of the mixture. Implementation details

are described in Section 6.3.4.

6.3.1 Source model

The proposed method is not specific to any particular source model and any parametric model

may be used as long as it can be formulated in a di�erentiable way. This is often facilitated

by automatic di�erentiation software such as TensorFlow [2] or PyTorch [145]. In this work, we

use the source-filter model of speech production [48] (cf. Section 2.2.1). It describes a signal as

an excitation signal from a sound source (e.g. the glottis) which is modified by a time-varying

filter (e.g. the vocal tract). An exemplary visualization of our source-filter model is presented in

Figure 6.2.

We do not explicitly model reverberation or other mixing filters which may have been applied.

However, if present, such e�ects will still be captured to a certain degree by the source model.

Hence, the model estimates source images and not the clean source signals.

In the following, we assume that the true source image signal vj(t) is segmented into N frames

of length T Õ samples. The n-th frame is given by

vj(n, t) = vj(t + nB), t œ {1, ..., T Õ} (6.1)

where B is the hop size between frames in samples and n œ {1, ..., N}. We denote the estimate

of the source signal frame generated by the source model using a tilde: ṽj(n, t). The source model
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may be formulated in the z-domain as

Ṽj(n, z) = Ej(n, z)
1

Aj(n, z)
. (6.2)

Ej(n, z) is the z-transform of the excitation signal ej(n, t) and 1
Aj(n,z) is the transfer function of

a time-varying all-pole filter of order K. We drop the source index j for brevity hereafter but

we would like to emphasize that each source is modeled with its dedicated model. The filtering

process in (6.2) is best described by the di�erence equation

ṽ(n, t) = e(n, t) ≠

Kÿ

k=1

ak(n) · ṽ(n, t ≠ k) (6.3)

where ak(n) are the filter coe�cients for frame n and ’·’ denotes scalar multiplication. We explain

how to deal with frame boundaries and other implementation details in Section 6.3.4.

A sinusoids plus noise model is employed to generate the excitation signal e(n, t). It is an

expressive synthesis model for music [172] and speech signals [103, 155, 44] which synthesizes sound

as a sum of sinusoids and filtered white noise. A di�erentiable version was recently implemented

by Engel et al [42, 43] who showed impressive results using it for model-based deep learning. Since

we model a monophonic source, we constrain the sinusoid frequencies to be integer multiples of a

fundamental frequency. The model thus reduces to the harmonics plus noise model [103, 42] which

we formulate as

e(n, t) = [–(n, t) · h(n, t)] ú r(t) + [w(t) ú d(t)] · g(n) (6.4)

where ú denotes the convolution operator, –(n, t) is the time-varying amplitude of the harmonic

signal h(n, t), and r(t) and d(t) are Impulse Responses (IR) of time-invariant finite impulse response

(FIR) filters. w(t) is a uniform white noise signal and g(n) is the constant noise gain for frame n.

The harmonic signal h(n, t) is defined as

h(n, t) =

Iÿ

i=1

sin(„i(n, t)) (6.5)

„i(n, t) = 2fi

tÿ

τ=1

i · f0(n, ·)/fs (6.6)

where „i is the instantaneous phase of the i-th harmonic, f0 is the fundamental instantaneous

frequency, and fs is the sampling frequency. The initial phase is assumed to be zero. Equation

(6.6) is a numerical approximation of integration based on sample and hold [76, Ch. 4]. Note that

the signal h(n, t) is fully parameterized by the time-varying fundamental frequency f0.

The filter r(t) imposes a fixed spectral shape on h(n, t). Without r(t), all sinusoids have the

same amplitude. However, for certain sound sources a specific time-invariant spectral shape can

be assumed, e.g. the spectral roll-o� of the glottal signal [48]. Alternatively, a specific amplitude

parameter may be used for each sinusoid in h(n, t) [172, 103]. However, we choose to make the

gain dependent on the frequency and not on the harmonic number. Similarly, d(t) determines the

spectral shape of the noise component. Both filters are time-invariant so that they only account for

the global spectral shape. Short term variations, e.g. due to articulations of words, are modeled

by the all-pole filter 1
A(n,z) .
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harmonic amplitude harmonics filter

+

fundamental frequency

white noise noise filter noise gain

parameterizes the harmonic signal

excitation source

excitation source filter

=

filter coefficients

Figure 6.2: Exemplary overview of the source-filter model decomposition. The model parameters
are denoted in blue font. The ’¶’ denotes element-wise multiplication. Although most components
are visualized through magnitude spectrograms, processing is not necessarily done in the time-
frequency domain.

The source model parameters are {ak(n), –(t), f0(t), r(t), g(n), d(t)}. In the next section, it is

explained how they are obtained. – and f0 need to vary slowly enough over time for the model

to be mathematically identifiable. This is indirectly enforced by the way these parameters are

estimated which leads to smooth trajectories.

6.3.2 Parameter estimation

We assume that the fundamental frequency trajectories for each of the J sources can be obtained

from the mixture signal with a multiple F0 estimation system. Given that many such systems exist

[93, 26, 218] and that it is still an active research area, we are confident that this is a reasonable

assumption. When all F0s are obtained, each F0 value needs to be assigned to one specific source.

Various solutions for the F0-to-source assignment problem have been proposed [18, 123, 165]. Most

of them are based on principles such as temporal pitch continuity, low voice crossing probability,

and minimal temporal gaps within a voice [123]. In our experiments we use a heuristic based

on these principles, cf. Section 6.4.2. F0 estimates are usually provided at a frame rate which

is smaller than the sample rate [93, 26, 218]. Therefore, following [42], the source specific F0

time series are upsampled to the sample rate using bilinear interpolation. This leads to smooth

trajectories.

In the following, we describe how the remaining synthesis parameters are estimated with a
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DNN for each source given its F0. The task the DNN has to solve is similar to the one of NMF in

the context of learning-free F0-informed source separation in [45, 40]. Note that the di�erentiable

source models do not put any constraints on the neural network type or architecture which is used

to estimate the parameters. Here we use a simple DNN as in [42] and focus on the advantages of

including parametric source models in deep learning based separation.

The mixture signal is represented by the logarithmic magnitude of its spectrogram obtained by

an STFT of x(t). The spectrogram has F frequency bins and N time frames. Each spectrogram is

normalized by subtraction of its mean and division by its standard deviation. Then, each frequency

bin is scaled and shifted by dedicated learned scalars. The DNN architecture is similar to the one

used in [42]. An overview of the DNN and further processing steps for the parameter estimation is

presented in Figure 6.3. We use linear layers and unidirectional Recurrent Neural Networks (RNN)

with Gated Recurrent Units (GRUs) [19]. The Multi-Layer Perceptron (MLP) consists of three

repetitions of linear layer, layer normalization [5], Leaky ReLU activation [119].
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Scale and shift (1, N, F)
GRU x3 (1, N, 256)

Linear (1, N, 128)

Mixture (1, N, F)

Duplicate (J, N, 128)

F0  (J, N, 1)

Hz to MIDI (J, N, 1)

MIDI to [0, 1] (J, N, 1)

Latent source representations

Latent mixture representation

Noise gain     Harmonic amplitude         

Noise filter IR    All-pole filter coeff.       

MLP (J, N, 512)MLP (J, N, 512)

MLP (J, N, 512)
GRU (J, N, 512)

Concatenate (J, N, 1024)

Linear (J, N, 1)

Exponential sigmoid (J, N, 1)

Linear (J, N, 1)

Exponential sigmoid (J, N, 1)

Linear (J, N, K+1)

LSF computation (J, N, K)

Line spectral frequencies

Algorithm 1 (J, N, K)

GRU (last frame) (J, 1, L)

Exponential sigmoid (J, 1, L)

Noise filter magnitudes

Window method (J, 1, 2L-1)

Figure 6.3: Overview of the processing steps for the parameter estimation. Transformations with
learnable parameters are shown in green, predefined processing steps in gray, (intermediate) outputs
in white boxes. The output shape of a transformation is shown in the right part of the box.

The mixture encoder computes a latent representation of the mixture and then creates as

many duplicates as there are sources. Each latent mixture copy is then combined with the F0
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information of one source by the decoder. The F0 is provided at the frame rate of the mixture

STFT. The F0 values are converted from Hertz to MIDI note numbers which are then normalized

to the interval [0, 1]. The decoder computes a separate latent representation for each source. The

source model parameters are obtained from this source representation by one last transformation

with learned parameters (linear layer or GRUs) followed by some predefined processing steps. The

frame-wise harmonic amplitude –(n) and the noise gain g(n) are computed with a linear layer with

an exponential sigmoid activation function [42] defined as

y = ymax · sigmoid(x)log(10) + 10≠7 (6.7)

where x and y are the input and output value, respectively, and ymax is a scalar determining the

upper bound of y. Following [42], the harmonic amplitude is then upsampled to the sample rate

using overlapping Hann windows which yields a smooth –(t). The noise gain is only required at

frame rate.

The filter with impulse response d(t) is time-invariant. Therefore, the network output from

which d(t) is computed should summarize information about the whole source signal. We obtain

such an output by processing the latent source representation with a unidirectional RNN with

GRUs and then using only the output at the last time frame for further processing. This last

output frame is processed with the exponential sigmoid presented in (6.7) which results in a tensor

of shape (J, 1, L). The tensor contains L samples of the magnitudes of the single-sided frequency

responses of the noise filters for J sources. The samples define a zero-phase FIR filter according

to the frequency sampling method [178]. Using the window method [179], we obtain the impulse

response d(t) as it is also done in [42].

The impulse response r(t) of the time-invariant harmonics filter can be obtained in the same

way as d(t) from a DNN output. One may also wish to make the filters time-varying by using a

linear layer for the last transformation or using all GRU outputs. However, for the scope of this

work, we fix r(t) manually. More details about r(t) are given in Section 6.4.2 where we describe

the experimental setup.

For the estimation of the parameters we addressed so far, practical ways have already been

proposed by Engel et al. [42]. More care needs to be taken when obtaining Infinite Impulse

Response (IIR) filters such as 1
A(z) from DNN outputs because it must be avoided that the filter

becomes unstable. The filter 1
A(z) of order K is fully defined by the filter coe�cients ak with

k œ {1, ..., K} (see also the di�erence equation in (6.3)). However, no condition which guarantees

stability can be formulated for the filter coe�cients directly.

Di�erent parameterizations of all-pole filters exist which allow for the formulation of stability

criteria. One option would be to estimate K reflection coe�cients [149] with the DNN. Stability

is guaranteed if the coe�cients are within the interval ] ≠ 1, 1[. They can be converted to the filter

coe�cients with a simplified version of the Levinson-Durbin algorithm [112, 39], see also [149].

This approach was used in [154] to define the all-pole vocal tract filter with a DNN for speech

synthesis. The drawback of this method is that conclusions about the filter’s frequency response

can neither be drawn from the reflection coe�cients nor the filter coe�cients.

Therefore, we choose to parameterize the all-pole filter with Line Spectral Frequencies (LSFs)

[83]. LSFs are related to the positions of the filter poles and thus to the frequency response

[149]. Hence, they provide an interpretable parametrization. They also allow the formulation of

constraints to control the filter response and can be interpolated [21]. An introduction to LSFs is
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given in Section 2.2.4. A stable all-pole filter 1
A(z) of order K is defined by K LSFs fulfilling the

relation

0 < Êk < Êk+1 < fi (6.8)

where Êk denotes the k-th LSF.

We obtain such LSFs as follows. The latent source representations are transformed by a linear

layer which yields a tensor of shape (J, N, K + 1). It is processed by an exponential sigmoid

activation with ymax = 2. The resulting tensor can be viewed as J · N vectors u œ R
K+1. The

vectors are normalized so that their entries uk sum up to fi:

ū =
u

qK+1
k=1 uk

· fi. (6.9)

The K LSFs respecting (2.9) are then obtained by the cumulative sum

Êk =

kÿ

i=1

ūi for k = 1, ..., K. (6.10)

Finally, the LSFs are converted to filter coe�cients using Algorithm 1 which is detailed in Section

2.2.4.

To sum up the parameter estimation, F0s are estimated from the mixture and assigned to the

sources using existing methods. ak(n), –(t), g(n), and d(t) are obtained with a DNN and r(t) is

fixed manually in this work but may also be estimated by a DNN.

6.3.3 Unsupervised training

The proposed training procedure requires only mixture signals, no isolated source signals are

needed. During training, the task of the DNN is to reconstruct the observed mixture by estimating

the corresponding parameters of the source models. A schematic overview of the training process

is presented in Figure 6.1. The generated mixture estimate x̃(t) is the sum of the source signals

generated by the source models:

x̃(t) =

Jÿ

j=1

ṽj(t). (6.11)

In theory, the source models make it possible to synthesize a mixture estimate x̃(t) which is

perceptually identical to the true mixture x(t). Since absolute phase o�sets are irrelevant for human

perception, the true and estimated mixtures do not need to have the same phase. Therefore, the

reconstruction loss Lrec is formulated as a multi-scale spectral loss [42]

Lc = ÎXc ≠ X̃cÎ1 + Î log(Xc) ≠ log(X̃c)Î1 (6.12)

Lrec =
ÿ

c

Lc (6.13)

where Xc and X̃c denote the magnitude spectrograms of the input mixture and its estimate,

respectively, and c = [2048, 1024, 512, 256, 128, 64] indicates the FFT size used to compute the

STFT. The time frames overlap by 75%.

The separation of the sources is essentially ensured by the assignment of the F0s to the sources
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similar to score/F0-informed separation with NMF [45, 40]. The DNN has to estimate the remain-

ing parameters for each source in order to minimize the loss.

At test time, the DNN parameters are fixed and a soft mask for source j is obtained by the

element-wise division Ṽj/
qJ

j=1 Ṽj where Ṽj is the magnitude spectrogram of the generated source

signal ṽj . The final time domain source estimates, marked with a hat, v̂j are obtained by Wiener

filtering using the soft masks.

6.3.4 Implementation details

We implemented the proposed method using the PyTorch framework [145]. For the di�erentiable

source models, we make use of the DDSP library [42]. We re-implemented it in PyTorch and added

extensions such as Algorithm 1 and an all-pole filter. The code is available online.2

Using an all-pole filter in the proposed framework entails two challenges. Firstly, the autore-

gressive filtering process is slow because it does not allow for precise parallel processing of frames.

Secondly, the filter is time-varying, i.e. its coe�cients are di�erent at every frame. Therefore,

extra care must be taken to ensure a smooth transition between frames to avoid artefacts. The

DNN operates at a frame rate which is determined by the FFT size T Õ and hop size B used to

compute the STFT of the mixture. Hence, the DNN estimates a set of K filter coe�cients for

each frame. We apply the all-pole filter to all frames in parallel using the di�erence equation in

(6.3) in order to make filtering faster. The initial states ṽ(n, t) with t Æ 0 are set to zero for each

frame. The output frames are then multiplied with a Hann window and the final output signal is

obtained by the overlap-add method. It is therefore important that the hop size B is chosen so

that the Hann window respects the constant overlap-add condition. We use B = T Õ / 2 in our

experiments. Windowing and 50% overlap make the transition between frames smooth. The errors

that are introduced by setting the initial states to zero instead of taking samples of the previous

frame into account (which is not possible in parallel processing) are negligible: Firstly, the errors

are larger at the start of each frame where their importance is mitigated by the window. Secondly,

since the filter coe�cients are di�erent at each frame, the importance of samples from the previous

frame is reduced.

We found it to be critical to implement Algorithm 1 with double precision (64-bit floating

point) because it is more sensitive to rounding errors with increasing filter order, which can lead

to unstable filters.

The excitation signal e(t) is computed as follows. The harmonic component –(t) · h(t) and the

noise w(t) are generated in the time domain for the entire signal length T . The time-invariant

FIR filters r(t) and d(t) and the noise gain g(n) are applied frame-wise in the frequency domain

followed by overlap-add.

6.4 Experiments

We evaluate the proposed approach on an a cappella vocal ensemble separation task. The goal is

to estimate the individual signals of J singers from their mixture. This task is a good choice for

evaluation because sources in vocal ensembles are homogeneous and correlated. Moreover, singing

voice is a challenging musical source. It has a strongly time-varying spectral envelop and also

produces sounds without any harmonic content such as unvoiced consonants. Also, only small

2https://github.com/schufo/umss
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amounts of data for supervised training are available for vocal ensemble separation. This makes

unsupervised learning an important alternative.

6.4.1 Data

As training and validation data, we use the Bach Chorals (BC) dataset3 and the Barbershop

Quartet (BQ) dataset.4 The BC set contains 26 chorals sung by a vocal quartet with the voices

Soprano, Alto, Tenor, Bass (SATB). The BQ set contains 22 songs performed by a vocal quartet

comprising the voices tenor, lead, baritone and bass. All voices are available in isolation for both

sets. This allows us to compare the proposed unsupervised approach to supervised baselines.

We combine the BC and BQ sets to generate what we call the full training and validation sets.

The full validation set comprises songs 8 and 9 of the BC set and songs 8 and 9 of the BQ set and

has a total length of 9 minutes and 10 seconds. The remaining songs build the full training set

with a total length of 91 minutes and 20 seconds. We also build a small training set consisting of

BC song 1 with a length of 2 minutes and 40 seconds and a small validation set consisting of BC

song 2 with a length of 2 minutes and 20 seconds. When mixtures with less than four singers are

created from the individual voice recordings, all possible combinations of the four voices with the

desired number of singers are used with the constraint of using only one singer per voice.

As test data, we use the Choral Singing Dataset [25]. It comprises three songs performed by

an SATB choir with four singers per voice. All 16 singer signals are available in isolation which

allows to evaluate the separation with objective metrics. We add the signals of individual singers

(max. one per voice) to produce the test mixtures. For mixtures of J = 4 singers, the test set has

a length of 6 minutes and 48 seconds. For mixtures of J = 2 singers, the test set has a length of

40 minutes and 48 seconds due to more possible voices combinations.

We resample the training, validation, and test data to a sample rate of 16 kHz. The training

examples are excerpts of 4 seconds length which are randomly drawn from the training set. The

validation and test set are split into fixed excerpts of 4 seconds length. There is no overlap

regarding singers, songs, or recording setup between the test and training data. While the training

data contain a considerable amount of reverberation, the test recordings are much less reverberant.

6.4.2 Experimental setup

We perform two sets of experiments: one using mixtures of J = 2 singers for training and testing,

and a second one using mixtures of J = 4 singers.

The F0s are obtained from the mixture signals using the multiple F0 estimation model of

Cuesta et al. [26]. We use the pre-trained ”Model 3” which is available online.5 For the F0-to-

source assignment on the given data, we found that a simple heuristic is su�cient. It is based on the

same principles as more advanced solutions such as temporal pitch continuity, low voice crossing

probability, and minimal temporal gaps within a voice [123, 165]. The F0 estimator provides m F0

values at each time frame. First, we process all frames where m = J . The F0 values are sorted

according to magnitude and assigned to the voices assuming they do not cross. Subsequently, the

remaining frames are processed. When m < J we assume that some voices are silent. We assign

each F0 value to the source which has the closest F0 value in a previous or subsequent frame (pitch

3https://www.pgmusic.com/bachchorales.htm
4https://www.pgmusic.com/barbershopquartet.htm
5https://github.com/helenacuesta/multif0-estimation-polyvocals
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continuity principle). The zero value is assigned to silent sources. In the rare case that m > J , we

sort the values according to magnitude and select J F0s using the pitch continuity principle and

assign them to the sources.

The mixture spectrograms are computed using an FFT size of T Õ = 512 and a hop size of

B = 256 samples. Hence, they have F = 257 frequency bins and N = 250 time frames. We fix

the impulse response r(t) so that the frequency response of the FIR filter falls o� with a rate of

6 dB/octave, with a reference frequency of 200 Hz below which the response is flat. We chose

this rate because it accounts for the combined spectral characteristics of the glottal source and

lip radiation [48]. We set the order of the all-pole filter to K = 20. The spectrograms of the

synthesized source signals Ṽj to compute the soft masks are computed with an FFT size of 2048

and a hop size of 256 samples.

Training is done with the Adam optimizer [90], a batch size of 16 and a learning rate of 0.0001.

Training is stopped after 200 consecutive epochs without improvement of the validation loss.

We train the model with the proposed unsupervised approach on the full and on the small

training set. We call the experiments UnSupervised-Full (US-F) and UnSupervised-Small (US-S),

respectively. As a reference, we also train the model in a supervised way on the same data. In

this case, the loss is computed for each source estimate individually using its target. The total

loss is the sum of the ”source losses”. We call these experiments SuperVised-Full (SV-F) and

SuperVised-Small (SV-S).

6.4.3 Baselines

We compare the proposed unsupervised approach to two learning-free methods and one supervised

approach. The baselines also exploit F0 information and compute soft masks for Wiener filtering.

The first learning-free baseline was proposed by Ewert and Müller [45]. It approximates the

mixture magnitude spectrogram X with a simple NMF decomposition:

X ¥ X̂ = WH (6.14)

where W œ R
F ◊R is a matrix of R spectral templates and H œ R

R◊N contains their activations

over N time frames. In [45], W and H are initialized using information from an aligned musical

score. One spectral template per semitone is used. In our experiments, we have F0 information

available, which is more precise than a semitone scale. Therefore, we use a scale with a precision

of 1
10 of a semitone. The F0 values are converted from Hertz to MIDI numbers which are rounded

to one decimal place for this purpose. The F0s are used for initialization and for the separation

to determine which activations belong to which source. After testing di�erent combinations, we

obtained the best results with an FFT size of 2048 and a hop size of 256 samples to compute the

spectrograms. We call this method NMF1.

The second learning-free baseline is the method proposed by Durrieu et al. [40]. The target

source is modeled with a source-filter model and the residual sources are modeled with a conven-

tional NMF. The method approximates the power spectrogram of the mixture Xpow as

Xpow ¥ X̂pow = (WΓHΓHΦ)
¸ ˚˙ ˝

filter

¶ (WF 0HF 0)
¸ ˚˙ ˝

source

+ (WOHO)
¸ ˚˙ ˝

residual

(6.15)

where ¶ denotes element-wise multiplication. WΓ œ R
F ◊P contains P spectral atoms consisting
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of shifted Hann windows with 75% overlap so that the whole frequency range is covered across

WΓ. The matrix HΓ œ R
P ◊K contains their activations to combine them to smooth filters and

HΦ œ R
K◊N contains activations to combine the smooth filters. WF 0 œ R

F ◊U contains a fixed set

of U spectral templates defined by the glottal source model KLGLOTT88 [94]. There is one spectral

template for each F0 in steps of 1
20 semitone between a minimum and a maximum frequency.

HF 0 œ R
U◊N contains the activations of the spectral templates. In [40], HF 0 is initialized using

F0 information of the predominant source estimated using the signal model in (6.15). We initialize

HF 0 using the F0 information we obtained from the multi-pitch estimation [26]. In [40], the

spectral templates of the residual sources WO œ R
F ◊R and their activations HO œ R

R◊N are

initialized randomly. We initialize them using the F0 information for the corresponding sources

as done in NMF1. This leads to improvements compared to random initialization. We call this

baseline NMF2. The parameters to be estimated are {HΓ, HΦ, HF 0, WOHO}. For NMF2, we

obtained the best results using an FFT size of 1024 and a hop size of 128 samples. To the best of

our knowledge, these two baselines are among the best learning-free, informed methods for musical

and homogeneous source separation.

Furthermore, we train the F0-informed supervised deep learning model for vocal ensemble

separation proposed by Petermann et al. [146] on our data. They use a classical U-Net architecture

with a control mechanism [126]. The F0 information is used to select the target source and to guide

the separation. For this baseline, mixture and target source spectrograms are computed using an

FFT size of 1024 and a hop size of 256 samples. Wiener filtering is applied at test time using all J

source estimates to compute soft masks. It is trained with the Adam optimizer [90], a batch size

of 16 and a learning rate of 0.001. We train this baseline on the full and the small training set and

call the experiments Unet-F and Unet-S, respectively.

6.5 Results and discussion

The separation quality was evaluated using the objective metric Scale-Invariant Source-to-Distortion

Ratio (SI-SDR) [106]. It is computed on evaluation frames of one second length without overlap

as usually done for musical source separation evaluation [185]. The results for the cases of J = 2

and J = 4 sources are shown in Fig. 6.4 (a) and (b), respectively. The data points for the boxplots

and violin plots are the SI-SDR values in dB for all evaluation frames in the test set. Frames

in which the target source is silent (the total energy is below 10) are excluded. For methods in

which random numbers are involved, the evaluation was run with five di�erent seeds to initialize

the pseudorandom number generator. These methods are NMF2 (random initialization of HΓ and

HΦ) and the proposed approach (random white noise) used in experiments US-F, US-S, SV-F, and

SV-S.

We conducted two-sided t-tests [131] to assess whether the means of the SI-SDR score distri-

butions are significantly di�erent for each pair of experiments in our study. We used a Levene

test [111] to assess whether a pair of SI-SDR score distributions has the same variance or not.

If true, the comparison was made with a Student’s t-test. If false, Welch’s t-test [210] was used.

The resulting p-values [131] are shown in Fig. 6.5 (a) and (b) for J = 2 and J = 4, respectively.

Most p-values are extremely small being in the order of 10≠4 or smaller. This indicates that the

corresponding means are significantly di�erent. It can be seen that a few p-values are considerably

larger. In this case it is more likely that the true means are not di�erent.

In general, the SI-SDR is higher for the separation of mixtures of two sources compared to the

86



Chapter 6. Unsupervised Audio Source Separation

(a) J = 2 sources

(b) J = 4 sources

Figure 6.4: Violin plots and boxplots of the SI-SDR values in dB for all evaluation frames. All
methods use Wiener filtering for the separation. The boxes extend from the first to the third
quartile, the medians are marked with a black horizontal line. The boxplot whiskers (dark blue)
extend from the first to the 99th percentile. The violin plots extend over the whole data range. In
(b), NMF2 has five outliers between -60 and -80 dB which are not shown.

four sources case. However, the relative performance of the methods is the same for both cases

with the exception that Unet-F outperforms NMF1 and NMF2 when J = 2 but not when J = 4.

Listening examples are available online.6

The proposed unsupervised method (US-F, US-S) performs better than the baselines. Its

performance is very close to the one which is reached by the same model trained in a supervised

way: SV-F is only slightly better than US-F, while SV-S and US-S have the same performance

(p-values of 0.9507 and 0.164 for J = 2 and J = 4). This means that the proposed method

achieves almost the same performance whether isolated target sources are available for training

or not. This can be explained by the fact that the F0 information is used very e�ciently by the

proposed method. The F0 fully parameterizes the harmonic source component h(t) and, hence,

defines the corresponding source to a large extent. The DNN has to determine the remaining

parameters which, given the F0, can be inferred from the mixture. Hence, isolated source targets

do not carry major additional information.

6https://schufo.github.io/umss/
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(a) J = 2 sources

(b) J = 4 sources

Figure 6.5: The p-values of pair-wise t-tests between the distributions of SI-SDR values for all
experiments.

Another interesting observation is that the performance of the proposed method does not drop

drastically when the amount of training data is decreased by 97% (US-F vs. US-S and SV-F vs.

SV-S). For J = 2, a decrease in SI-SDR can be seen but it is much smaller than for the supervised

baseline (Unet-F vs. Unet-S). For J = 4, the performance di�erence of the proposed approach is

very small when comparing training on the full and the small training set. For the unsupervised

version the di�erence is probably not significant since the p-value of 0.0335 for the comparison of

US-F and US-S is larger than most other p-values. In contrast, the SI-SDR of the Unet baseline

drops strongly for J = 4 as well. This shows that it is beneficial to integrate knowledge in the

form of explicit source models in the separation model. The source models limit the output space

of the source estimates. It is further narrowed down by the F0 information. This leads to high

data e�ciency compared to purely data-driven (informed) estimation.

To sum up, the proposed unsupervised model-based deep learning approach to source separation

performs better than learning-free and supervised purely data-driven baselines. It is also extremely

e�cient in learning from data. The method is useful in many scenarios where homogeneous sources

need to be separated and/or only a very small amount of data (possibly without ground truth) is

available for training. Besides choir separation as in our experiments, such scenarios may be the

separation of lead from background vocals or of traditional music with less common instrumenta-

tion. Since only mixtures are needed for training, the proposed model may also be trained directly

on the mixtures at hand which are to be separated. Given su�cient computational resources,

parameter optimization may also be done directly on each test mixture individually, which would

make the method learning-free.
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6.5.1 Limitations and perspectives

The experimental evaluation showed many advantages of the proposed approach compared to

various alternatives. Nevertheless, there are some limitations. As for all F0-informed separation

methods, the sources should exhibit mainly harmonic content and be monophonic so that the

separation can be guided by the F0 information. It requires that good F0 estimates can be obtained

for all sources from the mixture. As shown in the experiments, this is possible with existing

methods. Progress in research on multiple F0 estimation may lead to further improvements. An

extension of our method to polyphonic sources as well as estimating the F0 jointly with the other

source parameters may be an interesting direction for future work. Moreover, audio e�ects such

as reverberation or distortion, which may have been applied to the sources, should be explicitly

modeled in the source models and must hence be known beforehand. Lastly, the space complexity

grows linearly with the number of sources to be modeled.

(a) J = 2 sources

(b) J = 4 sources

Figure 6.6: Violin plots and boxplots of the spectral SI-SNR values in dB for all evaluation frames.
The source estimates of the methods US-F, US-S, SV-F, and SV-S are the generated signals ṽj .
The other methods used Wiener filtering of the mixture for the separation. The boxes extend from
the first to the third quartile, the medians are marked with a black horizontal line. The boxplot
whiskers (dark blue) extend from the first to the 99th percentile. The violin plots extend over the
whole data range. In (b), NMF2 has five outliers between -60 and -80 dB which are not shown.

In the experiments above, the final source estimates were obtained by Wiener filtering of the
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mixture. To this end, soft masks were obtained from the source signals ṽj generated by the source

models. We also evaluated the quality of the generated signals ṽj as source estimates. The metric

used for this evaluation was the spectral Scale-Invariant Source-to-Noise Ratio (SI-SNR) [205]. It

can be seen as a SI-SDR which is computed on magnitude spectrograms. We used this spectral

metric because the phase of the generated signals is known not to be the same as the one of the

ground truth signals. This makes a time domain evaluation not applicable. The results are shown

in Figure 6.6.

In terms of the spectral SI-SNR, the quality of such source estimates is inferior to the baselines

and to v̂j obtained using soft masks. This is because the synthesis of the signals ṽj is less constrained

than masking of the mixture. The output of masking is limited by the frequency content of the

mixture, since masking can only keep or remove (but not add) such content. In contrast, frequency

content which is not present in any source can be contained in ṽj . In fact, the DNN tends to

overestimate the noise content of the sources. While this is clearly audible in ṽj , no noise is added

in v̂j .

Nevertheless, we believe that source estimates generated by parametric models are a worthwhile

goal for future research. They provide a complete parameterization of the mixture signal which can

be exploited for tasks such as timbre or style transfer, transposition, and melody editing of single

sources. We included the generated source signals ṽj and their sum x̃ in the audio examples.7

Moreover, we provide two examples of melody editing for which the mixture parametrization was

exploited.

6.6 Conclusion

In this chapter, we presented a method for (musical) audio source separation which overcomes two

limitations of state-of-the-art supervised deep learning methods: They do not separate homoge-

neous sources and require large datasets of mixtures with the individual sources in isolation for

training. We proposed a novel unsupervised model-based deep learning approach. It integrates

model-based knowledge in the form of di�erentiable parametric source models in a data-driven

method and exploits F0 information. Experiments show that it outperforms learning-free and su-

pervised baselines. Furthermore, the method performs well even when trained on less than three

minutes of audio data. It allows to apply powerful deep learning based separation in domains

where training data is expensive or nonexistent.

7https://schufo.github.io/umss/
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Chapter 7

Conclusion and Future Work

Summary

This chapter concludes the dissertation. A summary of the main results and contributions is

provided followed by a discussion of the limitations and resulting directions for future work.
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In this dissertation we have explored di�erent ways to integrate prior knowledge into data-driven

approaches to audio source separation. The aim was to reduce the dependence on labeled data

and to exploit complementary data which may be available.

First, we focused on exploiting text as side information for supervised singing voice separation

with deep learning. To this end, we also proposed a novel lyrics alignment approach. We found

that while using text information can lead to improvements in di�cult scenarios, it also brings

back some negative aspects of knowledge-driven approaches such as low flexibility.

In a second step, we explored unsupervised learning for source separation in order to leverage

unlabeled data which is more readily available than labeled data. Learning only from mixtures

was enabled by exploiting F0 trajectories for each source as well as parametric generative source

models which were integrated in the training procedure.

In the following, we summarize the contributions of this thesis and possible directions for future

work.

7.1 Summary of contributions

7.1.1 Weakly informed audio source separation

Signal related side information for musical source separation such as musical scores or lyric tran-

scripts are widely available but usually not aligned with the mixture to be separated. In Chapter 4
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we proposed a novel DNN architecture for informed audio source separation which exploits non-

aligned side information. We showed that an attention mechanism can be used between two

encoders to learn the alignment when the network is trained only with a separation objective. As a

proof of concept, the approach was evaluated on a singing voice separation task using synthetic side

information with di�erent levels of expressiveness. Further experimental evaluation was performed

using text as side information for speech-music separation with low SNR. We found that joint

alignment and separation led to benefits for both tasks. The separation component facilitated text

alignment despite the low SNR and the phonetic information in the text led to small improvements

in separation quality. However, pre-aligned text led to stronger improvements of the separation.

The proposed approach builds the basis for a new lyrics alignment method proposed in Chapter 5.

We also presented two new evaluation metrics for audio source separation which complement the

standard metrics on frames with a silent target or estimated source.

7.1.2 Phoneme level lyrics alignment with DTW-attention

While text-to-speech alignment was performed successfully with the alignment approach introduced

in Chapter 4, aligning phonemes with singing voice required further improvements. Therefore,

DTW-attention, which is a combination of dynamic time warping and attention was proposed.

It incorporates the prior knowledge that text and audio sequences follow a left-to-right temporal

structure. The result was a new lyrics alignment method which works well not only for solo singing

but also with mixtures. Experimental results showed that DTW-attention is more data-e�cient

than CTC-based training. Hence, it is an attractive alternative especially for languages where

large datasets of audio and text pairs are not available.

For this work, the MUSDB dataset was extended by lyrics transcripts and further annotations

which are made publicly available1. The provided data can be used for research on automatic lyrics

alignment and transcription, text-informed singing voice separation, or singing voice synthesis and

analysis.

7.1.3 Text-informed singing voice separation

We provided new insights into the usage of text as side information for singing voice separation with

deep learning. Using the proposed joint approach to text-to-audio alignment and text-informed

voice separation led to a robust lyrics alignment method but did not lead to improvements for

the separation. We found that lyrics should be aligned first and can then be used to inform

the separation. Sequences of phonemes as side information are used by the proposed model as a

strong prior regarding the spectral shape of the voice estimate. This helps to preserve the phonetic

properties in challenging conditions. However, it is required that the text transcript and the

translation into phonemes accurately represent the voice signal and that the alignment is precise.

Otherwise, the separation performance is negatively influenced by the text prior. It must also be

noted that text information is most useful if exactly one singer is present in the mixture. There

are specialized use cases where text is a valuable source of information. For example, to separate

unvoiced sounds from drum sounds. However, the e�orts required to use text e�ectively do not

justify its usage in most singing voice separation problems.

1https://doi.org/10.5281/zenodo.3989267
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7.1.4 Unsupervised audio source separation

We presented an unsupervised deep learning approach to audio source separation. It exploits side

information in the form of F0 trajectories and model-based knowledge in the form of parametric

source models. It can be trained using only a small amount of mixture signals and does not require

separate source signals. In experiments on vocal ensemble separation with two and four singers, the

proposed method outperformed F0-informed learning-free approaches based on NMF and an F0-

informed supervised deep learning baseline. The high data-e�ciency allows its application to the

numerous music genres where separate sources for training do not exist or are expensive to obtain.

Furthermore, due to the parametric source models it provides a parameterization of the mixture

signal which can be exploited for downstream tasks such as timbre or style transfer, transposition,

or editing of the melody of single sources.

7.2 Future work

We presented some strategies to integrate prior knowledge into data-driven audio source separation

methods with a focus on music signals. Despite promising results, there remain several limitations

which may inspire directions for future work.

We showed that text as side information can lead to small improvements in singing voice

separation with deep learning compared to a non-informed approach with an identical DNN. While

this is an encouraging result, it does not yet fully justify the usage of text as side information. Given

that purely data-driven supervised deep learning approaches can reach better performance than

our informed approach [97], further analyses are necessary. They should concern the remaining

artefacts or failure modes of state-of-the-art data-driven approaches. This may even lead to new

evaluation metrics. One example would be to focus on the separation of di�erent phoneme classes

such as vowels, unvoiced fricatives, and stops from drum sounds with similar properties. This

might allow to define more precisely the scenarios in which lyrics as side information have most

value. Another aspect that may be improved is the dependence on accurate alignments which is

a limitation of the proposed approach. One could try to exploit the text in a looser sense, for

example, using only information about the succession of voiced and unvoiced sounds.

An advantage of the proposed lyrics alignment approach is that it requires only a small amount

of training data. However, it also makes an additional demand on the training data: separate

voice recordings must be available along with mixture signals because the model is trained with

a source separation objective. If alignment with solo singing is the target application and a small

amount of solo singing data is available for training, one can produce artificial mixtures using any

available instrumental music. Future research may explore other training objectives such as the

reconstruction of the observed text and audio sequences which may be done combining attention

and the CTC loss. First steps in this direction have been made recently [193].

Furthermore, the unsupervised source separation approach presented in Chapter 6 may be

extended in several ways. For example, e�ects such as reverberation could be modeled explicitly

with an additional filter to make the source models more general. However, it should be noted

that estimating the reverberation parameters of several sound sources from a mixture in one-shot

fashion is extremely challenging. A starting point could be to assume that the mixtures to be

separated are available for the unsupervised training procedure and that the sources have the

same reverberation parameters in all mixtures. In this case, the parameters can be learned from
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several mixtures as it is done in [42] for single monophonic sources.

Another aspect which o�ers room for improvement is the estimation of the noise component

in each source model. The F0 information concerns only the harmonic component and, hence,

there remains ambiguity in the assignment of a share of the noise observed in the mixture to each

source. A solution could be to formulate a noise model which depends on the harmonic content to

a certain degree.

In our work, we used an external multiple F0 estimator to provide the F0 trajectories for the

unsupervised learning approach. A challenging yet very interesting extension would be to estimate

the F0s jointly with the other synthesis parameters guided by the reconstruction loss. In order

to achieve separation one would also need to include the source assignment step. It seems to

be promising to further explore the synergies between source separation, fundamental frequency

estimation and F0-to-source assignment.

Moreover, we think that synthesis-based approaches to musical source separation have not

gained enough attention yet. The idea was explored in [12] and [13] in a supervised setting and

we proposed an unsupervised approach. However, the quality of synthesized source estimates is

still lower than of those obtained by filtering the mixture. Synthesizing source signals is a flexible

way to integrate domain knowledge in data-driven source separation and leads to interpretable

and modifiable estimates. Furthermore, synthesized signals do not contain interfering sources and

usually have a coherent and perceptually correct phase.

In general, the dependence on training data remains a main obstacle for progress in musi-

cal source separation and we believe that integrating knowledge in data-driven methods is one

promising avenue to tackle this issue. Alternatively, it may be worthwhile to explore strategies for

self-supervised learning of representations which can be used for source separation or to exploit

available data for related tasks in multi-task settings or via pre-training.
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Titre : Séparation de sources audio informée par apprentissage profond avec des données limitées

Mots clés : Apprentissage profond, traitement du signal, séparation de sources audio

Résumé : La séparation de sources audio consiste à

estimer les signaux individuels de plusieurs sources

sonores lorsque seul leur mélange peut être ob-

servé. Des réseaux neuronaux profonds entraı̂nés

de manière supervisée permettent d’obtenir des

résultats de l’état de l’art pour les signaux musicaux.

Ils nécessitent de grandes bases de données com-

posées de mélanges pour lesquels les signaux des

sources cibles sont disponibles de manière isolée.

Cependant, il est difficile d’obtenir de tels bases de

données car les enregistrements musicaux sont sou-

mis à des restrictions de droits d’auteur et les enregis-

trements d’instruments isolés n’existent pas toujours.

Dans cette thèse, nous explorons l’utilisation d’in-

formations supplémentaires pour la séparation de

sources par apprentissage profond, afin de s’affran-

chir d’une quantité limitée de données disponibles.

D’abord, nous considérons un cadre supervisé avec

seulement une petite quantité de données dis-

ponibles. Nous étudions dans quelle mesure la

séparation de la voix chantée peut être améliorée

lorsqu’elle est informée par la transcription des pa-

roles. Nous proposons un nouveau modèle d’ap-

prentissage profond pour la séparation de sources

informée. Ce modèle permet d’aligner le texte et

l’audio pendant la séparation grâce à un nouveau

mécanisme d’attention monotone. La qualité de l’ali-

gnement des paroles est compétitive par rapport

à l’état de l’art, alors qu’une quantité plus faible

de données est utilisée. Nous constatons que l’ex-

ploitation des phonèmes alignés peut améliorer la

séparation de la voix chantée, mais un alignement

précis et des transcriptions exactes sont nécessaires.

Enfin, nous considérons un scénario où seuls des

mélanges sont disponibles pour l’apprentissage.

Nous proposons une nouvelle approche d’appren-

tissage profond non supervisé. Elle exploite les in-

formations sur les fréquences fondamentales (F0)

des sources. La méthode intègre les connaissances

du domaine sous la forme de modèles de sources

paramétriques dans le réseau neuronal profond.

L’évaluation expérimentale montre que la méthode

surpasse les méthodes sans apprentissage basées

sur la factorisation de matrices non négatives, ainsi

qu’une approche d’apprentissage profond supervisé.

La méthode proposée est extrêmement efficace en

terme de données. Elle rend la séparation de sources

par apprentissage profond exploitable dans des do-

maines où les données étiquetées sont coûteuses ou

inexistantes.

Title : Informed Audio Source Separation with Deep Learning in Limited Data Settings

Keywords : Deep learning, signal processing, audio source separation

Abstract : Audio source separation is the task of esti-

mating the individual signals of several sound sources

when only their mixture can be observed. State-of-

the-art performance for musical mixtures is achieved

by Deep Neural Networks (DNN) trained in a super-

vised way. They require large and diverse datasets of

mixtures along with the target source signals in isola-

tion. However, it is difficult and costly to obtain such

datasets because music recordings are subject to co-

pyright restrictions and isolated instrument recordings

may not always exist.

In this dissertation, we explore the usage of prior

knowledge for deep learning based source separation

in order to overcome data limitations.

First, we focus on a supervised setting with only a

small amount of available training data. We inves-

tigate to which extent singing voice separation can

be improved when it is informed by lyrics transcripts.

To this end, a novel deep learning model for infor-

med source separation is proposed. It aligns text and

audio during the separation using a novel monoto-

nic attention mechanism. The lyrics alignment per-

formance is competitive with state-of-the-art methods

while a smaller amount of training data is used. We

find that exploiting aligned phonemes can improve

singing voice separation, but precise alignments and

accurate transcripts are required.

Finally, we consider a scenario where only mixtures

but no isolated source signals are available for trai-

ning. We propose a novel unsupervised deep lear-

ning approach to source separation. It exploits infor-

mation about the sources’ fundamental frequencies

(F0). The method integrates domain knowledge in the

form of parametric source models into the DNN. Ex-

perimental evaluation shows that the proposed me-

thod outperforms F0-informed learning-free methods

based on non-negative matrix factorization and a F0-

informed supervised deep learning baseline. Moreo-

ver, the proposed method is extremely data-efficient.

It makes powerful deep learning based source sepa-

ration usable in domains where labeled training data

is expensive or non-existent.
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