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Abstract

The energy-stress tensor method is a theoretical approach to approximating the energetic

contours of the \stochastic reverberation" using conservation equations based on the process

of acoustical di�usion. In this formalism, terms describing acoustical energy density, sound

intensity, and momentum 
ux may all be collected in a single tensor called the energy-stress

tensor, which provides the basis for conservation equations capable of characterizing the

stochastic reverberation. This approach was previously demonstrated to be capable of rep-

resenting the di�use �eld in spaces where no location in the domain was more than a meter

from at least one boundary; that is, spaces that could be characterized as being primarily

one- or two-dimensional, such as a hallway or a 
oor of an o�ce building. The present thesis

aims to extend these �ndings by a number of avenues: checking the frequency validity of

previously derived models, introducing source terms and rede�ning the model in terms of

a �nite volume time domain (FVTD) approach, auralizing the results in the context of a

hybrid acoustical model, and �nally, providing a framework to extend the use of the method

to three-dimensional spaces. A derivation of temporally and spatially averaged instanta-

neous values of the tensor in terms of the acoustic velocity potential in a pressure-velocity

FVTD simulation may be used to explore the behavior of the stochastic reverberation with-

out exhaustive physical measurement in spaces with varying scattering characteristics, and

eventually, to inform the direct simulation of tensor terms at the boundaries and in free

space. This may be used in future work to characterize simulation parameters in terms of

geometry and materials properties rather than physical measurements.
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R�esum�e

La m�ethode du tenseur �energie impulsion est une approche th�eorique permettant d'approcher

les contours �energ�etiques de la "r�everb�eration stochastique" �a l'aide d'�equations de con-

servation bas�ees sur le processus de di�usion acoustique. Dans ce formalisme, les termes

termes d�ecrivant la densit�e d'�energie, l'intensit�e sonore et le 
ux de quantit�e de mouve-

ment peuvent tous être rassembl�es en un seul tenseur appel�e le tenseur �energie impulsion,

qui fournit la base des �equations de conservation capables de caract�eriser la r�everb�eration

stochastique. Cette approche, appel�ee \m�ethode du tenseur �energie impulsion" ou m�ethode

EST (apr�es l'anglais), s'est av�er�ee capable de repr�esenter le champ di�us dans des espaces

o�u tous les �el�ements de simulation touchent au moins une limite, c'est-�a-dire des espaces

qui peuvent être caract�eris�es comme �etant principalement unidimensionnels ou bidimen-

sionnels, tels qu'un couloir ou un �etage d'un immeuble de bureaux. La pr�esente th�ese vise

�a �etendre ces r�esultats par un certain nombre de voies : v�eri�er la validit�e fr�equentielle des

mod�eles pr�ec�edemment d�eriv�es, introduire des termes sources et red�e�nir le mod�ele en ter-

mes d'approche dans la m�ethode temporelle des volumes �nis (FVTD), auraliser les r�esultats

dans le contexte d'un mod�ele acoustique hybride, et en�n, fournir un cadre pour explorer

le comportement du tenseur de contrainte d'onde dans les espaces tridimensionnels a�n de

fournir une base pour les �equations de volume dans les espaces avec des r�egions en espace

libre, loin de toute fronti�ere qui pourrait être utilis�ee pour la r�eduction dimensionnelle. Le

calcul des �el�ements du tenseur �energie impulsion partout dans un espace a �et�e r�ealis�e en

d�erivant les valeurs instantan�ees en termes de potentiel de vitesse acoustique pour une sim-

ulation FVTD pression-vitesse. Une fois moyenn�ee dans le temps et dans l'espace, cette

repr�esentation peut être utilis�ee pour explorer le comportement de la r�everb�eration stochas-

tique sans mesure physique exhaustive dans des espaces pr�esentant des caract�eristiques de

di�usion variables, et �nalement, pour r�ealiser la simulation directe des termes du tenseur

aux fronti�eres et en espace libre. Cela pourrait être utilis�e dans des travaux futurs pour car-

act�eriser les param�etres de simulation en termes de g�eom�etrie et de propri�et�es des mat�eriaux

plutôt que de mesures physiques.
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R�esum�e Long

La m�ethode du tenseur �energie impulsion est une approche th�eorique permettant d'approcher

les contours �energ�etiques de la \r�everb�eration stochastique" �a l'aide d'�equations de conser-

vation bas�ees sur le processus de di�usion acoustique. La r�everb�eration stochastique est la

partie de la r�eponse impulsionnelle d'une salle qui se produit apr�es le temps de m�elange,

lorsque l'oreille humaine ne peut plus discerner les r�e
exions individuelles, lorsque le champ

acoustique est devenu di�us. Un champ di�us signi�e que l'�energie sonore se propage de

mani�ere �egale dans toutes les directions et qu'elle est de force �egale en tous points d'une salle.

Cet �etat est pr�esum�e être un processus gaussien, ce qui signi�e qu'il peut être synth�etis�e

avec du bruit sans perte de qualit�e perceptive.

La di�usion est le processus acoustique facilit�e par la g�eom�etrie de la salle, par lequel

l'�energie d'une source commence en champ libre, subit un nombre de r�e
exions quadratique-

ment croissant et devient un champ di�us. Des m�ethodes permettant de caract�eriser ce pro-

cessus ont �et�e utilis�ees pour mod�eliser la propagation de l'�energie sonore (�a savoir, la partie

di�use) dans une salle avec des conditions aux limites bas�ees sur les bilans �energ�etiques

observ�es aux murs, et sont collectivement appel�ees \m�ethode de l'�equation de di�usion"

ou DEM. La distribution de la densit�e d'�energie dans la salle, variable dans le temps et

d�ependant de la fr�equence, correspond �a la puissance de la r�everb�eration stochastique dans

chaque bande de fr�equence, de sorte qu'elle peut être synth�etis�ee par l'application d'une

enveloppe �a un bruit �a bande limit�ee.

L'un des inconv�enients de ces approches est que, bien que les hypoth�eses de bilan

�energ�etique utilis�ees dans leur construction garantissent la conservation de l'�energie, il n'en

va pas de même pour la conservation de la quantit�e de mouvement, ce qui n�ecessite des

modi�cations heuristiques pour obtenir des r�esultats de simulation pr�ecis. En acoustique,

le terme qui repr�esente la quantit�e de mouvement des particules est l'intensit�e sonore, ou


ux de densit�e d'�energie. Lorsqu'il est examin�e instantan�ement, ce champ vectoriel peut

être trait�e comme un indicateur de la direction d'arriv�ee des ondes de pression, mais il

communique �egalement des informations sur le transfert d'�energie di�use entre les sections

d'une salle. Assurer la conservation de l'intensit�e sonore n�ecessite l'introduction d'un terme

tensoriel appel�e tenseur de contrainte d'onde dans les �equations du champ constitutif. Dans
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le cadre du DEM, l'intensit�e sonore est suppos�ee être invariante dans le temps, ne variant

qu'en fonction de l'emplacement parce qu'elle 
uctue sur une �echelle de temps beaucoup

plus courte que la densit�e d'�energie, ce qui signi�e que le tenseur de contrainte d'onde est

diagonal avec les trois composantes �egales, dont la somme correspond �a la densit�e d'�energie

globale. Dans certains cas, cependant, cette hypoth�ese n'est pas valable, et il faut alors con-

sid�erer le tenseur de contrainte d'onde complet. Ces termes d�ecrivant la densit�e d'�energie,

l'intensit�e sonore et le 
ux de quantit�e de mouvement peuvent tous être rassembl�es en un

seul tenseur appel�e le tenseur �energie impulsion, qui est une illustration du th�eor�eme de

Noether pour l'acoustique, mais o�u les seules quantit�es conserv�ees sont la densit�e d'�energie

et l'intensit�e sonore.

Les �equations de conservation r�esultantes constituent un syst�eme qui peut être utilis�e

pour simuler la r�everb�eration stochastique avec une hypoth�ese suppl�ementaire d'�equilibre

du quantit�e de mouvement aux fronti�eres du domaine sans correction heuristique. Cette ap-

proche, appel�ee \m�ethode du tenseur �energie impulsion" ou m�ethode EST (apr�es l'anglais),

s'est av�er�ee capable de repr�esenter le champ di�us dans des espaces o�u tous les �el�ements de

simulation touchent au moins une limite, c'est-�a-dire des espaces qui peuvent être caract�eris�es

comme �etant principalement unidimensionnels ou bidimensionnels, tels qu'un couloir ou un

�etage d'un immeuble de bureaux. A�n de simpli�er le calcul des �el�ements hors diagonale

du tenseur de contrainte d'onde, la dimensionnalit�e de ces exemples d'espaces a �et�e utilis�ee

pour contraindre les �equations r�egissant le transfert d'�energie volum�etrique en utilisant les

hypoth�eses de conditions aux limites, dont la similarit�e avec les �equations de lignes de trans-

mission a permis une r�eduction �nale �a une forme �equivalente aux �equations du t�el�egraphe

qui peuvent être r�esolues num�eriquement.

La pr�esente th�ese vise �a �etendre ces r�esultats par un certain nombre de voies : v�eri�er

la validit�e fr�equentielle des mod�eles pr�ec�edemment d�eriv�es, introduire des termes sources

et red�e�nir le mod�ele en termes d'approche dans la m�ethode temporelle des volumes �nis

(FVTD), auraliser les r�esultats dans le contexte d'un mod�ele acoustique hybride, et en�n,

fournir un cadre pour explorer le comportement du tenseur de contrainte d'onde dans les

espaces tridimensionnels a�n de fournir une base pour les �equations de volume dans les

espaces avec des r�egions en espace libre, loin de toute fronti�ere qui pourrait être utilis�ee

pour la r�eduction dimensionnelle.

La r�everb�eration stochastique est suppos�ee avoir lieu au-dessus de la fr�equence de Schroeder,

en dessous de laquelle le comportement modal est dominant, même �a des �echelles de temps

longues. Les r�esultats concernant les r�egions de fr�equence pouvant être repr�esent�ees par la

m�ethode EST en t�emoignent, et soulignent l'importance de mod�eliser un espace pr�esentant

des caract�eristiques de di�usion et de dispersion su�santes.

L'introduction de termes de source dans le mod�ele permet l'injection variable dans le

temps d'�energie dans le champ di�us en termes de vitesse volumique connue, ce qui permet,
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par exemple, de repr�esenter des syst�emes qui incluent une r�etroaction. Ces d�eveloppements

ont �et�e v�eri��es avec la même proc�edure que l'�etude de validit�e fr�equentielle ci-dessus, d�emontrant

la mise en �uvre d'une source dipôle et la repr�esentabilit�e de la r�everb�eration stochastique

r�esultante. En outre, la m�ethode EST b�en�e�cie d'une recontextualisation dans le formal-

isme FVTD, qui est fond�e sur la conservation du 
ux �a travers les surfaces de cellules

adjacentes, fournissant un m�ecanisme naturel pour examiner l'intensit�e sonore entre les

�el�ements du volume. Le d�eveloppement de ce sch�ema �a la fois pour la m�ethode EST et pour

la mod�elisation traditionnelle de la pression et de la vitesse �etait important �a la fois pour le

sch�ema d'auralisation et pour la caract�erisation des termes du tenseur de contrainte d'onde

�a partir des champs de pression.

Comme nous l'avons d�ej�a mentionn�e, la r�everb�eration stochastique peut être synth�etis�ee

par l'application d'enveloppes �energ�etiques variant dans le temps �a un bruit �a bande limit�ee

; cependant, il ne s'agit que d'une partie de la r�eponse impulsionnelle compl�ete d'une salle.

Pour d�emontrer l'applicabilit�e de la m�ethode EST dans un contexte de r�everb�eration en

temps r�eel, un mod�ele hybride compos�e de la r�everb�eration stochastique, des r�e
exions

pr�ecoces de la m�ethode des sources images et du comportement modal �a basse fr�equence

d'une simulation FVTD pression-vitesse a �et�e assembl�e en un seul sch�ema d'auralisation.

L'�etalonnage du niveau d'�energie entre les m�ethodes dans les bandes de temps et de fr�equence

a �et�e examin�e, ainsi que les autres avantages de l'utilisation d'un sch�ema volum�etrique

pour la r�everb�eration stochastique plutôt que des r�everb�erateurs non physiques ou d'autres

m�ethodes de calcul des enveloppes d'�energie d�ependant de la fr�equence �a partir de m�ethodes

stochastiques telles que le tra�cage de rayons.

En�n, le calcul des �el�ements du tenseur �energie impulsion partout dans un espace a

�et�e r�ealis�e en d�erivant les valeurs instantan�ees en termes de potentiel de vitesse acous-

tique pour une simulation FVTD pression-vitesse. Une fois moyenn�ee dans le temps et

dans l'espace, cette repr�esentation peut être utilis�ee pour explorer le comportement de la

r�everb�eration stochastique sans mesure physique exhaustive dans des espaces pr�esentant des

caract�eristiques de di�usion variables, et �nalement, pour r�ealiser la simulation directe des

termes du tenseur aux fronti�eres et en espace libre. En outre, le pavage de l'espace de Rie-

mann est explor�e comme un moyen d'expliquer g�eom�etriquement le processus de di�usion

qui se produit dans les salles poly�edriques. Cela pourrait être utilis�e dans des travaux futurs

pour caract�eriser les param�etres de simulation en termes de g�eom�etrie et de propri�et�es des

mat�eriaux plutôt que de mesures physiques.
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Notation

T Energy-stress tensor

E Energy density

E Wave-stress tensor

I ; J Sound intensity

@i ; @ii First & second partial derivatives of coordinate i

	 Velocity potential

v Particle velocity vector

p Sound pressure

r Gradient operator

� Laplacian operator

� Air density

c Speed of sound

Q Source volume velocity
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Acronyms

DOA Direction of Arrival

EST Energy-stress tensor

DEM Di�usion equation method

FVTD Finite volume time domain

FDTD Finite di�erence time domain
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Chapter 1

Introduction

The acts of analyzing, simulating, and auralizing room acoustics have long been segmented

into domains in time and frequency where distinct phenomena take place, despite our un-

derstanding of a unifying underlying physical model. This can be attributed to the necessity

of approximating particular phenomena given computational constraints, or as a result of

psychoacoustic evidence relaxing the precision required to model a speci�c acoustic behavior

with enough detail to satisfy the human auditory system. What may be an e�ective ap-

proach to modeling acoustical processes in one domain may not necessarily be for another.

Often, a modeling assumption that leads to a simpli�cation in one domain may be compu-

tationally untenable when extended to account for the entirety of the acoustic behavior in

a space, delineating the boundary where a di�erent model may be more appropriate.

In considering a typical room impulse response, one such division occurs temporally be-

tween the region dominated by distinct arrivals of wavefronts (including both the direct path

and early re
ections) and later re
ections that are so numerous as to be indistinguishable.

The earlier, temporally distinct events are e�ciently modeled by geometric approaches to

acoustics that treat propagating sound in an optical fashion. Rather than modeling the

spatial progression of an entire wavefront emanating from a source through a 
uid medium,

geometrical acoustics approximates a portion of that wavefront as a plane wave traveling

along a ray that undergoes re
ection in a specular fashion. This approach is ideally suited

to representing the discrete specular events that make up the most salient acoustic content

at the beginning of an impulse response, and is reviewed in detail in Savioja and Svensson

(2015). The so-called late re
ections, which become more and more numerous as time goes

on, approach a di�use �eld in many rooms, and while geometric methods are capable of

reproducing such a �eld, the basis of those methods are in representing expanding wave

fronts individually, meaning a proliferation of re
ections requires a corresponding expansion

in the computational resources to model them. In fact, Monte Carlo ray tracing approaches

1



2 CHAPTER 1. INTRODUCTION

have been shown to be functionally equivalent to energy models as in Le Bot and Bocquillet

(2000), but there remain compelling reasons to choose non-geometric approaches, especially

for large or coupled room volumes. Depending on de�nitions, the point in time where the

sound�eld is characterized as becoming di�use, meaning it may be modeled stochastically,

is typically named the \mixing time" or the \transition time." In this thesis, we consider

mixing to be an asymptotic property of particles in a geometric space ful�lling certain re-

quirements, as discussed below, and therefore will use the latter term to describe the moment

of change from distinct to di�use.

Similarly, in the frequency domain, the line is often drawn at Schroeder's frequency,

below which distinct modes may be observed, and may be dominant in the overall room

response. As in the temporal case, geometrical approaches are capable of modeling this

behavior; however, it requires a great number of individual wavefronts to be simulated in or-

der to approach the modal distribution in space. Modeling this constructive and destructive

interference in such a piecemeal fashion can be more computationally demanding than a vol-

umetric simulation in the same frequency range. Conversely, while modal excitation models

are very e�cient below Schroeder's frequency, even for very large spaces, as the number of

modes grows, the superimposition principle leads to the same computational challenges as

geometric models encounter with the growth in echo density.

Comparable lines are often drawn in terms of di�raction e�ects as well. In most cases,

the direct path can be modeled satisfactorily using only distance and taking losses from air

absorption into account, but the presence of any interfering object (or even a complete lack

of a visual path between source and receiver) introduces frequency-dependent di�raction

based on the geometry. This behavior, which is most prominent in the distinct-arrival, low-

frequency region, can be handled via extensions to geometrical approaches, and is modeled

implicitly in wave-based schemes, meaning that it does not require special consideration.

Nonetheless, choosing an approach that excels in this region means that high frequency

behavior must be addressed some other way, either by hybridization with geometric tech-

niques above some cuto� frequency and the ensuing complications regarding equalization

and alignment between the two techniques, or by taking on the additional computational

load of a wideband wave-based approach, even if the domain may be arti�cially limited in

time or space.

As is probably apparent, even though direct simulation of wave phenomena appears to

be a consistent solution to the simpli�cations proposed above, even that approach comes

with challenges of both a theoretical and computational nature. For some simple rooms, it is

plausible to derive an analytic solution to the acoustic wave equation, but even small changes

in boundary conditions or geometry can put closed form solutions out of reach, illustrating

the chaotic nature of the underlying physical processes. Accurately representing boundary

conditions is also di�cult in numerical simulations of the wave equation, whether performed
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Figure 1.1: Validity domain for stochastic reverberation, after Jot et al. (1997) and Badeau
(2019)
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in the frequency or time domain, and since stability of these schemes is often predicated on

a mesh size that decreases with the highest frequency to be modeled, they often su�er from

extreme computational requirements for even modest sampling rates. Wideband audio rates

have only recently become possible with the advent of schemes optimized for parallelization

on consumer graphics cards, and while the results in terms of accuracy are exciting, real-time

simulation remains out of reach for the time beingLai and Hamilton (2020).

While these delineations appear at �rst glance to be limitations, they are rather a tes-

tament to our shared understanding of the individual phenomena that play important roles

in our perception of the acoustics in a particular room. This is perhaps best evidenced by

the popularity of hybrid models that combine the best parts of each of these approaches to

achieve rapid and accurate simulation of even very complicated spaces.

1.1 Reverberation

Nonetheless, the domain commonly referred to as the \stochastic reverberation," de�ned as

the portion of an impulse response that can be modeled by a stochastic process, remains

di�cult to predict without performing exhaustive simulations, regardless of approach. This

portion of the impulse response is also commonly referred to as the \late reverberation," in

contrast to the early re
ections that provide most of the spatial information for a listener.

In the context of this thesis, however, we will use the term late reverberation in the sense

given by Figure 1.1, where it represents the portion of an impulse response falling after

the transition time, regardless of frequency. The stochastic reverberation, while perhaps

less critical in terms of spatialization, is still an important part of the overall coloration

of a particular impulse response, and especially for rooms with long reverberation times,

if modeled poorly, can sound arti�cial, as described in Schroeder et al. (1962). Recent

mathematical descriptions of this phenomena include Polack et al. (2019) and Badeau (2019).

The statistical nature of the stochastic reverberation can be thought of as a result of

the increasing echo density throughout time, which grows at least quadratically as noted

by Kuttru� (2016), and once exceeding the threshold of audibility, results in a perceptually

di�use �eld. Alternatively, one may consider the threshold of discretization, the point at

which there is more than one echo per time sample. Characterization of the transition time in

terms of perceptual, theoretical, or signal processing-based thresholds is a subject of ongoing

research and is covered in greater detail in Chapter 2. To reach a particular threshold, in

any case, a space must be ergodic: that is, a particular wavefront (perhaps as described by

a ray) must spend, on average, equal time at any position in any direction within the room.

Related is the concept of a space that is mixing, meaning that initially adjacent wavefronts

observed at a much later time will be completely separated, and spread out over the entire

room. While there are theoretical spaces that do not ful�ll these conditions, including
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regular polyhedral rooms, which only permit a discrete number of directions of travel from

an initial condition, in practice, imperfections in the construction of real rooms, as well as

the presence of other interfering objects, means that most non-theoretical spaces have these

characteristics. The time scale at which these qualities become apparent, however, depends

on the amount of imperfection or scattering material in the room, and is closely related to

the measure of transition time mentioned above. These criteria in the context of stochastic

reverberation are covered in great detail in Polack (1992) and Polack (1993).

The advantage when it comes to modeling this region is that a description of the �eld's

statistical characteristics is mathematically interchangeable with the �eld itself. Since the

human auditory system is incapable of perceiving di�erences in the chaotically-changing

nature of a room impulse response from one moment to the next, whether as a result

of temperature 
uctuations or subtle changes in listening position, so to should we feel

comfortable exchanging one essentially random sequence for another with the same statistics.

In practice, this means that matching the acoustical indices of a particular noise sequence

to measured data is a very practical way of modeling the stochastic reverberation without

having to perform a simulation with geometrical or wave-based models.

This approach has long been used in room acoustics, from simply applying known

frequency-dependent exponential decays to noise in a �lterbank-style implementation, as

in Moorer (1979), to collecting information from a stochastic ray tracing simulation to mod-

ify a noise sequence of increasing echo density, as in Schr•oder and Vorl•ander (2011). Of

course, the validity of this region is limited, so it is almost exclusively used as one module in

a hybrid approach, regardless of how the direct path and early re
ections are modeled. In

both of these cases, however, certain information must already be known about the space be-

ing modeled: while they are appropriate for real-time reproduction of the acoustic �eld, they

rely on either preexisting measurements of a space (which could limit the source-receiver

pairs available) or on performing su�ciently-long geometrical acoustics simulations (which

may not account for some wave phenomena).

As described before, since stochastic reverberation is de�ned to take place above Schroeder's

frequency, wideband wave-based simulations that cover this region are unfortunately not yet

feasible at real-time simulation update rates. Even though they would obviate the need for

noise modeling entirely, in terms of computational e�ciency, using a wave-based method in

such a fashion could still be seen as wasteful if an alternative method for discovering the

statistical properties of the stochastic reverberation were available. Finally, as mentioned

before, due to the chaotic nature of the stochastic reverberation, small changes in boundary

conditions, atmospheric changes, or perturbations of source and receiver positions can lead

to di�erences in the �ne structure of an impulse response that are apparent upon visual in-

spection, but are ultimately inaudible. An exhaustive but deterministic modeling approach

may not re
ect this reality, giving a false impression of accuracy or consistency over time
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that does not exist.

1.2 Energy-based methods

The focus of this thesis is on directly predicting the characteristics of the stochastic reverber-

ation using an energy-based approach. Energetic methods, which eschew direct simulation

of acoustic pressure waves in lieu of modeling the 
ow of sound energy, have primarily seen

use in noise-related applications, as predicting noise levels does not require the degree of

resolution that high-�delity room acoustical modeling does.

The advantage of energetic approaches is that because the envelope of sound energy

changes much more slowly temporally and spatially than that of a sound pressure �eld

sampled at a particular point, the numerical methods used to approximate solutions can use

far coarser (and therefore, far fewer) elements as well as lower sample rates to discretize a

particular problem domain. In cases of outdoor noise studies where typical room acoustics

approaches are infeasible due to the size of the area under study, this increase in speed makes

prediction of certain acoustical indices tractable.

Energy-based methods have also historically been used to analyze and synthesize spatial

impulse responses. Typically, the quantities of interest are the energy density (a scalar at the

point of measurement) and the sound intensity (a vector indicating energy 
ow). Between

these two quantities, the progression of the sound�eld toward an ideally di�use state as

well as the direction of arrival (DOA) of particular packets of non-di�use energy can be

predicted as a function of time, as demonstrated in Merimaa and Pulkki (2005) and Pulkki

and Merimaa (2006).

This thesis also begins with an analysis-synthesis approach, where measurements and

simulated sound�elds are linked to one another, but the ultimate goal is the direct prediction

of di�use energy from room geometry and materials.

1.3 Motivation

As mentioned before, the advantage of focusing on the stochastic reverberation is that it can

be modeled as a noise sequence with statistical properties matching those of the stochastic

reverberation in a particular impulse response.

In room acoustics, auralization of the late reverberation has often been accomplished

either by performing a simulation that is capable of reproducing the reverberant tail (e.g.

ray tracing with thousands of rays or a wave-based simulation that runs beyond the rever-

beration time of the space) and convolving the impulse response with source material, or

by using a reverberator structure to arti�cially reproduce the late reverberation in terms
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of frequency-dependent exponential decay rates. With the advent of fast convolution tech-

niques, pioneered by Reilly and McGrath (1995), both of these approaches are viable for

real-time reproduction of known sound�elds.

The downside of the reverberator approach is that it requires �tting to a known or

measured impulse response, and modi�cation depending on position is not straightforward.

Even recent extensions by Alary et al. (2019) to traditional reverberator structures that

capture spatial details are best suited to modeling a single spatial source-receiver pair,

despite the fact that they allow for accurate representation of input and output directionality.

Thus, for rapid, physically-informed prediction of the stochastic reverberation that di-

rectly and deterministically represents acoustical properties such as scattering in a room's

evolution toward the di�use �eld, wave-based energetic approaches are a strong contender.

1.4 Outlook

Over the course of this thesis, we present a method for modeling the stochastic reverberation

based on the acoustic energy-stress tensor, or EST, which represents the energy of sound

waves as well as the changes in their momenta and wave stress in a conservative fashion.

This means that for particular spaces, we may model the 
ow of sound energy throughout

the space directly, without having to model the individual pressure waves that make up

the sound�eld. We will cover the theory of the constitutive equations, implementation of

a previous and a new discretization of the system including sources, the auralization of

the resulting numerical models in a hybrid scheme, and �nally, a direct computation of the

terms of the energy-stress tensor from a pressure-based simulation with well-known boundary

conditions to learn more about the behavior of the tensor without relying on di�use �eld

assumptions to form a tractable system of equations.

In essence, each of these four main research outputs regarding the EST method each

serve a portion of extending the model toward predictively modeling large three-dimensional

spaces.

Chapter 3 is a study of a preexisting �nite di�erence time domain (FDTD) solution to

a 1-dimensional version of the EST, which simpli�es to the telegraph equations. The goal

of this study was to address the solution space of the method for all possible combinations

of the two boundary condition parameters introduced. To that end, in comparison with

two real hallways, we proposed combinations of coe�cients for which the method produced

a sound�eld with equivalent acoustical measures in terms of speci�c frequency bands. By

analyzing the frequency ranges for which this was possible, as well as the di�erences between

the two hallways and the resulting model validity, we attempt to verify the di�use �eld

assumptions of the model as well as setting up an approach for performing bandlimited

synthesis of the stochastic reverberation where the method is applicable.
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Chapter 4 focuses on recasting the method from the previous FDTD discretization to a

�nite volume time domain (FVTD) approach, and derives the inclusion of source terms for

the model. This formalism directly characterizes energy 
ows between discretized cells as

well as providing an implementation of boundary conditions that is more easily generalizable

to higher dimensions. As in the previous chapter, comparison of the solution space of the

model to physical measurements in a real hallway provides a useful way to con�rm the

frequency-dependent validity of the model.

Chapter 5 presents an approach to auralize the energy density �eld resulting from the

FVTD model introduced in the previous chapter in the context of a hybrid methodology

using geometric and wave-based approaches for the specular and modal regions of synthesized

impulse responses, respectively. In this section, we introduce in greater detail the FVTD

discretization approach as it applies to a pressure-velocity wave equation, which results in

minor changes to the di�erence equations as well as requiring di�erent boundary conditions.

Finally, we present an interface for comparing the simulated hybrid impulse responses to

measurements from the real space with both auralizations and spectrograms as a function

of distance from a source. Notes on informal listening tests highlight some of the successes

and challenges arising from the hybrid model.

Finally, Chapter 6 describes the use of a high-frequency FVTD simulation in the pres-

sure domain, the same as in the previous chapter but with a much higher sample rate, to

directly compute and average the time-varying terms of the energy-stress tensor. This al-

lows us to examine the behavior of the tensor in distinct regions of the room that was not

possible with previous 1-dimensional numerical approaches or without exhaustive roboti-

cized measurement of a real space. Finally, the results are examined through the lens of

validating the di�use �eld assumptions inherent in all of the preceding EST models. We

present preliminary evidence supporting these claims with the hope that it may enable direct

characterization of di�using spaces with respect to their geometry and materials properties

in the future.

In general, the goal of this thesis is to present the EST method as a viable candidate for

calculating and synthesizing the stochastic reverberation in known rooms at present, and in

the future, to predictively evaluate spaces that are not tractable under the dimensionality

assumptions previously required to eliminate the complications of the wave-stress tensor,

but rather to numerically solve for it directly. In the course of these studies, demonstrations

of the advantages and drawbacks of the method, both computationally, theoretically, and in

practical usage, will be discussed.
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Chapter 2

Background

2.1 Introduction

Statistical models of reverberation are perhaps some of the oldest in acoustics. For example,

Sabine's reverberation equation is still used today to model the stochastic portion of spaces

of varying volumes, even if as an approximation, it is only based only on rate of decay

in terms of volume. Since then, our understanding of reverberation has grown, and with

it, the aformentioned partitioning of impulse responses into domains that largely exhibit a

particular acoustic phenomenon has allowed us to derive a more complete picture of how to

model each of those regions.

In this case, we are interested in the \di�use �eld" portion of the late reverberation.

Typically, this is de�ned as a �eld where energy 
ows equally in all directions and is evenly

distributed throughout a space. Though it has been shown that any absorbing room cannot

support an ideal di�use �eld, and recent studies such as Nolan et al. (2019) have further

highlighted the anisotropic nature of sound�elds in absorbing conditions, it is nonetheless

a reasonable approximation to make. Given that most non-pathological rooms contain

furniture or other scattering surfaces, it seems reasonable to presume that they achieve a

di�use �eld, even if it is not within the perceptual limits compared to an ideal di�use �eld

established by Romblom et al. (2016). Lindau et al. (2010) describes a procedure for �nding

the perceptual transition time, compared to statistical approaches focusing on echo density

such as Abel and Huang (2006), Huang and Abel (2007), and Defrance et al. (2009).

Focusing on the di�use �eld means that there is no need to accurately represent the

early portion of the impulse response nor any modal behavior, though as will become clear,

consideration of how these portions are exposed in modeling the di�use �eld through energy-

based techniques is an important part of understanding how to use such an approach to

synthesize a portion of a wideband impulse response.

10
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2.2 Statistical acoustics

Historically, as mentioned before, modeling reverberation has typically been statistical in

nature. Even as understanding of the connection between the characteristics of re
ections

within a room and the resulting acoustical indices grew, before it was plausible to model such

interactions, reverberation could be described statistically in terms of the room's attributes.

Sabine's empirically derived equation relating room volume, total absorption, and reverber-

ation time, can be regarded as the beginning of statistical approaches to room acoustical

modeling.

Later, Eyring's approach illustrated how the loss of energy at each successive discrete

re
ection of a single ray related exponential decay and absorption. While his formula does

not speci�cally model individual re
ections, still essentially neglecting the shape of the room

and individual travel times from re
ection to re
ection, it is the overall concept of a decaying

sound�eld that provided the basis for methods that could approach the treatment of sound

energy in a statistical manner.

2.2.1 Energy Density and Sound Intensity

More recent approaches considered the mathematical and statistical behavior of sound�elds

themselves. The energy density and energy 
ux of a �eld that satisfy the acoustic wave

equation are de�ned in terms of the kinetic and potential energy at a given location and

point in time resulting from the compression and rarefaction of gas. Energy density is

not equivalent to sound pressure, but acts in a similar fashion, re
ecting the tendency

of energy throughout a space to return to equilibrium. Derivation of these quantities in

the acoustic context is given in Morse and Feshbach (1953) and Morse and Ingard (1968).

Though energy density and 
ux, which in acoustics we call the sound intensity, cannot be

used to directly model pressure, application of these concepts in general acoustical �elds

such as that of Schi�rer and Stanzial (1994) encouraged interest in energetic approaches

to acoustics outside of noise control studies, and as we show later on, can still be used for

the synthesis of perceptually equivalent representations of the stochastic reverberation. One

particularly popular use of the sound intensity is as a predictor of average direction of arrival

for individual pressure wavefronts in a spatial impulse response, as described by Merimaa

and Pulkki (2005).

Concurrently with the development of energy-based acoustics, statistical approaches

based on the trajectories of particles of sound were being developed. The concept is simi-

lar to ray tracing, but where the goal is not to collect discrete rays at a listener position,

but rather, to understand the statistical properties of such a system throughout time. As

demonstrated in Polack (1992), under this formalism, the idea of the transition time could be

tied to development of the di�use �eld, leading to the concept of di�usion as the mechanism
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for modeling the stochastic reverberation. From these ideas, a model of di�use sound�elds

based on particle di�usion was developed by Picaut et al. (1997), which would come to be

known as the di�usion equation method, or DEM. Later improvements by Jing and Xiang

(2007) were a result of computing the energy balance at the boundaries assuming an isotropic

distribution of incidence, making it applicable for a wider variety of absorption coe�cients.

The use of the DEM continues in recent research, especially for large structures as in S•u G•ul

et al. (2019).

The thread that ties these two somewhat distinct concepts together is that of the di�use

sound�eld itself, which comes with assumptions about the nature of the mean energy 
ow

within a space. Thus, predicting the stochastic reverberation with the DEM is inherently

tied to the behavior of the energy density and sound intensity within the space. The main

issue with the method is that the resulting conservation equation for sound intensity is

time invariant due to the assumption that the energy density in a space is nearly isotropic,

resulting from the observation that sound intensity tends to zero much more quickly than

energy density. Working from Morse and Feshbach (1953), it turns out that introducing time

variance to the sound intensity requires the consideration of the wave-stress tensor, which

generalizes the energy density and sound intensity and allows for conservation of sound

intensity to be de�ned, but also greatly complicates computation of the resulting �eld. In

the next section, the derivation of these relationships is performed, and the collection of the

resulting terms into a single conserved quantity, the energy-stress tensor, is demonstrated.

2.3 Energy-Stress Tensor Method

2.3.1 Theory

We begin with a common model of 3-dimensional wave motion in room acoustics:

1
c2 @tt 	 � �	 = 0 ; (2.1)

where 	, the velocity potential of the �eld, is de�ned in terms of the particle velocity vector

v = �r 	 and the sound pressure p = �@t 	, where r is the gradient operator, � the

Laplacian operator, � the air density, and c the speed of sound. Finally, we notate the �rst

and second partial derivatives according to coordinatei as @i and @ii , respectively.

We are interested in the energy stored in the �eld, that is, the energy resulting from

the compression of the medium itself and the motion of the waves traveling through it.

Normally, given a pressurep and particle velocity v , we can compute the di�erence between

kinetic and potential energy densities with �
2 jv j2 � p2=(2�c 2). Equivalently, using the vector

potential and following the sign convention of Morse and Ingard (1968) p. 168, we may
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write the Lagrangian L as

L =
� �
2

�
� 1
c2 (@t 	) 2 + ( @x 	) 2 + ( @y 	) 2 + ( @z 	) 2

�

=
�
2

�
1
c2 (@t 	) 2 � jr 	 j2

�
:

(2.2)

By de�nition, the energy density of the system is given by

E tt = @t 	( @(@t 	) L) � L

= @t 	( @(@t 	) L) +
�
2

�
� 1
c2 (@t 	) 2 + jr 	 j2

�

= @t 	( @(@t 	) L) �
1

2c2 � (@t 	) 2 +
�
2

jr 	 j2

= @t 	(
�
c2 @t 	) �

1
2c2 � (@t 	) 2 +

�
2

jr 	 j2

=
�
c2 (@t 	) 2 �

1
2c2 � (@t 	) 2 +

�
2

jr 	 j2

=
�

2c2 (@t 	) 2 +
�
2

jr 	 j2:

(2.3)

Similarly, the three terms of the sound intensity I = ( E tx ; E ty ; E tz ) are

E tx = @t 	( @(@x 	) L) = � �@t 	 @x 	 ;

E ty = @t 	( @(@y 	) L) = � �@t 	 @y 	 ;

E tz = @t 	( @(@z 	) L) = � �@t 	 @z 	 ;

(2.4)

or, all together,

I = � �@t 	 r 	 : (2.5)

We con�rm that these terms satisfy an equation of continuity, such that any change in

the energy density is due to a change in the sound intensity. By the use of the general
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Leibniz rule, @i (@i 	) 2 = 2@i 	 @ii 	, we have:

@t E tt + r � I

=
�
c2 @t 	 @tt 	 + �@x 	 @t @x 	 + �@y 	 @t @y 	 + �@z 	 @t @z 	

� �@x (@t 	 @x 	) � �@y (@t 	 @y 	) � �@z (@t 	 @z 	)

=
�
c2 @t 	 @tt 	 + �@x 	 @t @x 	 + �@y 	 @t @y 	 + �@z 	 @t @z 	

� �@x @t 	 @x 	 � �@y @t 	 @y 	 � �@z@t 	 @z 	

� �@t 	 @xx 	 � �@t 	 @yy � 	 @t 	 @zz 	

= �@t 	[
1
c2 @tt 	 � �	] = 0 :

(2.6)

where we recognize the wave equation in the penultimate expression.

Additionally, we de�ne the wave-stress tensor,E , whose componentsE ij ful�ll the second

vector continuity equation @t I + r � E = 0, which will be proven next.

For i; j = x; y; z, and with � ij = 1 when i = j or -1 otherwise:

E ii = @i 	 @(@i 	) L � L

=
�
2

(
1
c2 j@t 	 j2 +

X

j

� ij j@j 	 j2);

E ij = @i 	 @(@j 	) L

= �@i 	 @j 	 :

(2.7)

Note that by the symmetry of products of derivatives, Exy = Eyx , Exz = Ezx , and Eyz =

Ezy .

Thus, the symmetric wave-stress tensor may be written in full as

E =

0

B
B
@

Exx Exy Exz

Eyx Eyy Eyz

Ezx Ezy Ezz

1

C
C
A : (2.8)
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With this de�nition, we may write the continuity equations for sound intensity.

1
c2 @t E tx + @x Exx + @y Exy + @zExz = 0 ;

1
c2 @t E ty + @x Eyx + @y Eyy + @zEyz = 0 ;

1
c2 @t E tz + @x Ezx + @y Ezy + @zEzz = 0 :

(2.9)

Taking the �rst equation as an example and again recognizing the wave equation in the

penultimate expression, we have

1
c2 @t E tx + @x Exx + @y Exy + @zExz

=
� �
c2 @x 	 @tt 	 �

�
c2 @t 	 @tx 	 +

�
c2 @t 	 @xt 	

+ �@x 	 @xx 	 � �@y 	 @xy 	 � �@z 	 @xz 	

+ �@x 	 @yy 	 + �@y 	 @xy 	 + �@x 	 @zz 	 + �@z 	 @xz 	

= � �@x 	[
1
c2 @tt 	 � �	] = 0 :

(2.10)

The second and third lines of the vector equation proceed in the same manner, showing

that the system as a whole, with the inclusion of the continuity equation for energy density,

is conservative.

Energy-Stress Tensor

Because of this fact, all of the terms may be collected into a single conserved tensor, which

we call the energy-stress tensor, or EST, for short:

T =

0

B
B
B
B
@

E tt E tx E ty E tz

E tx Exx Exy Exz

E ty Eyx Eyy Eyz

E tz Ezx Ezy Ezz

1

C
C
C
C
A

: (2.11)

Speci�cally, this tensor distills the continuity equations for energy density, sound in-

tensity, and the energy momentum 
ux (as expressed in the wave-stress tensor). In fact,

this system is an expression of Noether's theorem, which relates the presence of invariances

in a given system to conservation laws. In the context of general relativity, the theorem

was used to explain the relationship of the conservation laws of linear momentum, angular

momentum, and energy to symmetries in translation, rotation, and time, respectively.



16 CHAPTER 2. BACKGROUND

EST in lower dimensions

In the 3-dimensional case, we have four coupled equations, and because the tensor is sym-

metric, the free variables are every member of the upper triangular part, for a total of

ten.

Furthermore, it can be seen that the 1- and 2-dimensional cases are simply subsets of

these equations, where eliminating the last term in each equation and the �nal equation

itself results in a system one dimension lower. Thus, for the 2-dimensional case, there are

three equations and six unknowns, and the 1-dimensional case has two equations and three

unknowns.

For example, in the 1-dimensional case, we have the following set of equations:

@t E tt + @x E tx = 0 ;

@t E tx + @x Exx = 0 :
(2.12)

Performing the same simpli�cations as in the 3-dimensional case demonstrates that this

system is also conservative, and thus represents an energy-stress tensor of rank 2.

We will now proceed to describe the assumptions and strategies used to resolve these

underdetermined systems using the theory of di�use �elds in a particular space by the

speci�cation of boundary conditions, which has been the focus of past and present work on

the topic. For example, in the 1-dimensional example given above, we have two equations

and three unknown variables,E tt ; E tx , and Exx , meaning one further equation is required

in order to solve the system. We will call the use of this approach the energy-stress tensor

method, or EST method for short.

2.3.2 Scattering and di�usion

Introducing boundary conditions into the EST method relies on the presence of scattering

that occurs at the walls or other surfaces within a space. These re
ections can be specular

or di�use depending on the relative scale of the surface's features and the frequency of

the incident wave, as shown in Figure 2.1. Note that in this context, the term \di�use

re
ection" is used in the optical sense, meaning that incident waves are scattered rather

than the mirror-like behavior of a specular re
ection. In other words, the name should not

be taken to mean a re
ection that is occurring after the sound�eld has become di�use.

For typical rooms, the region above Schroeder's frequency often demonstrates a su�-

ciently high proportion of di�use re
ections to cause the distribution of energy throughout

the room to become increasingly isotropic and eventually uniform due to the stochastic

nature of the re
ected wave directions. This process is referred to as di�usion, and is the

driving force behind the temporal evolution of an impulse response from the specular early
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Figure 2.1: Frequency dependence of re
ection scattering on surface with characteristic
dimension L , after Cox et al. (2006)

re
ections to the late reverberation.

Study of scattering processes has led to advances in architectural acoustical modeling,

both in geometrical approaches such as ray tracing, as well as the energetic methods that are

the subject of interest in this research. Additionally, in the practical sense, understanding

the design and use of \di�users" or other scattering surfaces has been important in the

design of concert halls and recording studios since their introduction by Schroeder (1975)

and summarized in Cox and D'Antonio (2016).

For geometric methods, the importance of modeling di�use re
ections has long been

understood, as evidenced in Kleiner et al. (1993), and most modern approaches integrate a

frequency-dependent scattering coe�cient to approximate these e�ects within their stochas-

tic frameworks, such as Schr•oder (2011).

In energy-based modeling, the focus instead has been on the development of the di�usion

equation and the integration of a statistical di�usion coe�cient. This idea was �rst proposed

by Ollendor� (1969), and was later re�ned by Picaut et al. (1997), leading to the DEM

discussed above.

2.3.3 Dimensional reduction

In the case of the EST method, integrating over surfaces perpendicular to the direction of

energy density and sound intensity wave motion and introducing energy and momentum

balances on the walls was demonstrated to be capable of modeling 1- and 2-dimensional

rooms in Dujourdy et al. (2017) and Dujourdy et al. (2019). In this case, the \dimension-

ality" of the room refers to the number of cardinal directions that are much longer than

the characteristic wavelength of energy density waves, which are on the order of a meter.

This is related to the modulation frequency of the di�use �eld, which is dominated by the
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rate of decay, and has been experimentally shown to be below 20 Hz. This characteristic is

described in more detail in Polack et al. (1984a) and Polack et al. (1984b).

Since this is typically very slow in comparison to the modulation frequency of pressure

waves, which are often modeled up to 20 kHz to match the human auditory system, in the

case in a long corridor or an open o�ce, the problem can be e�ectively treated as being 1-

or 2-dimensional, respectively. Put another way, integrating the EST continuity equations

over any dimension that is of the same characteristic length as the energy density (meaning

it is not a primary direction of energy propagation) and postulating an energy balance

and a momentum balance on the corresponding surfaces allows us to rewrite the sound

intensity and wave-stress tensor terms involving derivatives of that coordinate in terms of

the remaining directions. In the 1-dimensional case, this amounts to integrating over two

dimensions and rede�ning the four associated terms (two sound intensity directions and two

momentum 
uxes) in terms of the remaining energy density and sound intensity. As will be

seen below, this results in a tractable form resembling the transmission line equations.

In the two dimensional case, such as an open o�ce, only one dimension is able to be

eliminated with this strategy, leaving its two associated members of the EST de�ned in

terms of the two remaining sound intensities and four momentum 
uxes. Since this process

may only remove one continuity equation, the resulting system is underdetermined, and

requires further assumptions to close the system. In Dujourdy et al. (2019), for example,

the Z-direction was eliminated, resulting in the following system of equations:

1
c

@t E + @x Jx + @y Jy +
A
�

E = 0 ;

1
c

@t J +
D
�

J + ( @x ; @y )

 
Exx Exy

Exy Eyy

!

= 0 ;

where J = ( Jx ; Jy ) = I =c. We will ignore A; D , and � for the time being, taking them only

as arbitrary constants. In this situation, there are 6 free variables (E; J x ; Jy ; Exx ; Exy , and

Eyy ) and only 3 equations.

The authors proposed two further assumptions to close the system. The �rst is equipar-

tition of energy, meaning that the total energy is evenly split between the two directions of

propagation, or in short, that E tt = Exx + Eyy . The second assumption is decorrelation,

which means that the sound�eld is isotropic, and the direction of propagation of waves in

the �eld is equally distributed. Under this assumption, an important part of de�ning the

di�use �eld, the energy 
ux from one dimension to another must be zero, as any change

would imply that one direction was favored. This eliminates the o�-diagonal elements of the

wave-stress tensor, such thatExy = Eyx = 0. While these assumptions are not necessary

for the 1-dimensional cases we will study over the course of this thesis, we mention them
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here to re
ect back upon in the �nal chapter, when a computational study of a sound�eld

may allow us to con�rm or deny whether these assumptions are valid.

Now, we proceed with a derivation of the reduction of the 3-dimensional EST to a 1-

dimensional solution, following from Dujourdy et al. (2017). A hallway is a good candidate

for a 1-dimensional reduction, as its primary axis is much longer than either its width or

height. We further presume that the width and height are on the order of the characteristic

length of the EST, meaning that our discretization need not exceed one sample, and allowing

us to treat the entire space according to linear samples along its length.

To begin, we to consider an arbitrary hallway as a rectangular solid of dimensionslx �

ly � lz , where lx is the length, ly the width and lz the height of the corridor, on average,

implying a cross-sectional areaS = ly lz . Note that despite the fact that we are interested

in reducing the problem to modeling only the propagation of sound along the length of the

corridor, we still must consider the 3-dimensional nature of the hallway, and thus, begin

from the 3-dimensional version of the energy-stress tensor.

Energy balance

We return �rst to the continuity equation for energy density, Equation 2.6:

1
c

@t E tt + @x E tx + @y E ty + @zE tz = 0 :

We hypothesize that E tt and E tx are constant along the cross-sectional area of the

corridor, that E ty is independent ofz, and that E tz is independent ofy.

Then, we may integrate over the cross-sectional area in order to �nd a single continuity

expression for that point along the corridor. With dy and dz elements ofly and lz , we have

0 =
ZZ

@t E tt dxdy +
ZZ

@x E tx dxdy +
ZZ

@y E ty dxdy +
ZZ

@zE tz dxdy

=
1
c

@t ES + @x Jx S + ( J +
y � J �

y )lz + ( J +
z � J �

z )ly :

(2.13)

where J = I/c

This relation introduces the mean sound intensity in each axial direction for each of the

four walls, indicated by + and - in terms of their coordinate system, such that J +
i = � J �

i .

Now, we propose an energy balance on the walls relating the energy density and the incident,

re
ected, and absorbed portion of the sound intensity for a given section.

Given an incident and re
ected normal sound intensity, the absorbed sound intensity is,

of course, the di�erence between the two:

Jabs = J inc � Jref : (2.14)
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The absorbed sound intensity, in accordance with Sabine theory, is

Jabs = �J inc ; (2.15)

where � is the Sabine absorption coe�cient.

Now, the task is to determine expressions for the incident and re
ected sound intensity in

terms of the average sound intensity and energy in front of the wall. Jing and Xiang (2007)

argued that one quarter of the total sound energyE enters and leaves each wall, due to its

equal distribution. Furthermore, half of the sound intensity in front of each speci�c wall

enters and leaves the wall. As is apparent from the fact that the absorbed sound intensity is

proportional to the incident sound intensity, and equal to the di�erence between the incident

and re
ected sound intensity, the sign of the sound intensity terms must be opposite. Thus,

J inc =
E
4

+
J
2

;

Jref =
E
4

�
J
2

:

(2.16)

This gives us a relationship between the mean sound intensity in front of each wall and

the total energy shared by all four walls:

J =
�

2(2 � � )
E: (2.17)

With A = �
1� �

2
, this reduces to

J =
A
4

E: (2.18)

Then, returning to Equation 2.13 and taking all four walls into account, the expression

becomes
1
c

@t ES + @x Jx S + AE
ly + lz

2
= 0 : (2.19)

Finally, we develop an expression for the mean free path in the hallway, keeping in mind
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that lx � ly ; lz and allowing us to neglect terms that become very small.

� =
4V
Stot

=
4lx ly lz

2lx (ly + lz ) + 2 ly lz

=
4ly lz

2(ly + lz ) + 2 ly lz=lx

=
4S

2(ly + lz )

=
2S

ly + lz
:

(2.20)

Ultimately, we can now write an equation for the energy density and axis-aligned sound

intensity:
1
c

@t E + @x Jx = �
A
�

E: (2.21)

Momentum balance

A similar method may be used to perform a dimensional reduction of Equation 2.9. The

assumptions required for this process are thatJx and Exx are constant on the cross-sectional

area of the hallway, and like before,Exy is independent of y and Exz is independent of

z. In order to form a momentum balance on the walls, di�use �eld theory is once again

used to de�ne the redistribution of energy from the direction of propagation to the o�-axis

directions. Acoustically, this redistribution has a physical explanation in scattering, where

wave energy is redirected from one direction to another; therefore, the degree of scattering

is what ultimately determines the relationship between the incident sound intensity and the

wave stress 
ux in a particular region. In this manner, the o�-diagonal components of the

wave-stress tensor may be accounted for in terms of the previously used tensor values.

We integrate again over the cross-sectional area of the corridor, as in 2.13, but using the

X component of the continuity equation for sound intensity.

0 =
ZZ

@t E tx dxdy +
ZZ

@x Exx dxdy +
ZZ

@y Exy dxdy +
ZZ

@zExz dxdy

= @t Jx S + @x Exx S + ( E +
xy � E �

xy )lz + ( E +
xz � E �

xz )ly :

(2.22)

The E �
ij terms are the wave stress (or, equivalently, momentum 
ux) in front of their

respective walls, as noted previously.
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Dujourdy et al. (2017) proposed a momentum balance on the walls, such that the scat-

tered sound momentum is proportional to the incident momentum, and similar to the en-

ergy balance as before, the scattered portion is equal to the di�erence between the entering

and outgoing momentum. In other words, where the momentum 
ux M represents an

o�-diagonal term of the wave-stress tensor such asExy or Exz ,

M scat = �M ent

= M ent � M out :
(2.23)

As before, the challenge is to determine the ingoing and outgoing momentum 
ux in

terms of the wave stress and sound intensity in front of each segment. Since in this case

Jx is parallel to the wall, it must contribute equally to each momentum 
ux. Conversely,

according to the momentum balance, half of the wave stress enters and leaves the wall, but

with opposite signs.

M ent =
Jx

4
+

M scat

2
;

M out =
Jx

4
�

M scat

2
:

(2.24)

In combination with the momentum balance, this results in

M scat = � (
M
2

+
Jx

4
)

=
�

2(2 � � )
Jx :

(2.25)

We de�ne the modi�ed scattering coe�cient in a similar fashion as the modi�ed absorp-

tion coe�cient above:

D =
�

1 � �= 2
: (2.26)

Then, all of the wave stress terms in front of the wall may be written as

E +
xy = � E �

xy = E +
xz � = E �

xz =
D
4

Jx : (2.27)

At this point, we have completed our coverage of the terms of the EST as we have

de�ned Jy ; Jz ; Exy , and Exz solely in terms of E; J x , and Exx . By symmetry, we also

have expressions forEyx and Ezx , and because no energy is presumed to travel in the Y

and Z directions, we may eliminate Eyy ; Eyz ; Ezy , and Ezz . The last term that remains

is Exx , however, as it is the only remaining energy density term, it must be equal to the

total energy, E tt . Therefore, replacing terms in Equation 2.22 and using the expression
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for the mean free path in the hallway, the resulting dimensional reduction of the intensity

conservation equation is

1
c

@t Jx + @x E = �
D
�

Jx : (2.28)

Together, Equations 2.21 and 2.28 constitute a 1-dimensional reduction of the EST sys-

tem for a long hallway similar to the transmission line equations. As described in Dujourdy

et al. (2017), it is possible to relax some of these assumptions by considering averages for

each of the integrals performed; however, this does not change the underlying geometric

requirements, namely that the room is much longer in one dimension, and that energy 
ows

primarily along that axis.

Discussion

To summarize, the energy and momentum balances mentioned before are e�ectively hy-

potheses regarding the absorption and scattering of energy density, sound intensity, and

wave stress at the walls based on Sabine's theory of reverberation and di�use �eld theory.

It is useful to note here that this approach to dimensional reduction and the assumptions

implicit in it remains relevant for the rest of the thesis. Further development of this speci�c

form of the 1-dimensional EST is limited to the following chapter and the study of the nu-

merical scheme used to simulate the time-varying energy density in the hallway, however, we

will return to the development of the energy and momentum balances once again when we

switch to a di�erent discretization scheme for the model. As will shortly be demonstrated,

these coupled equations can further be reduced to a form involving only the energy density

called the telegraph equation. The development of boundary conditions on the surfaces not

included in the volume equations above (essentially the ends of the hallway) is speci�c to

this form, which is why we do not address them here. In later chapters, we will use a �nite

volume approach to discretization of the system, reusing the ideas from this dimensional re-

duction, but recast in a form that treats all boundary conditions in the same fashion, rather

than integrating some of the assumptions of the physics occurring at the domain edges into

the volume equations.

Furthermore, while we will not cover it in detail here as it covers some of the same ground,

the studies Dujourdy et al. (2017) and Dujourdy et al. (2019) from which these derivations

originate demonstrated the existence of boundary conditions that produce numerical results

that match a physical space in the 1000 Hz frequency band. In the following chapter,

we will extend these results to cover a wider frequency range, again by comparison with

measurements of a real hallway, validating the treatment of such a space as 1-dimensional.
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2.3.4 Limitations

While the strategy of dimensional reduction is valid and useful for modeling the stochastic

reverberation in rooms with at least one dimension on the order of the characteristic length

of energy density, the extension to rooms of 3 dimensions (where none of the lengths are

on the order of the meter) using the same strategy is not tractable. Finding an alternative

strategy for the development of the energy-stress tensor in 3-dimensional spaces is the focus

of the rest of this thesis.

In both the 1- and 2-dimensional cases, the assumptions required to eliminate the o�-

diagonal elements and reduce the system to the solvable telegraph equation form are a direct

result of di�use �eld assumptions from the di�usion equation approaches discussed above,

and therefore, the solutions are only valid when the �eld is su�ciently di�use. This is

expected, but nonetheless constrains the use of the method to spaces that scatter enough

energy to bene�t from modeling the stochastic reverberation in this fashion: a room that is

not di�using, even at high frequencies, may not be representable under these assumptions.

Nonetheless, many rooms that do not mix very well may still exhibit su�cient di�usion at

high frequencies such that at least a portion of their response may be modeled stochastically.

Furthermore, while the modi�ed absorption and scattering coe�cients introduced to

parameterize materials at the room boundaries are based on well-known acoustic proper-

ties, they are nonetheless predicated on the di�use �eld assumptions regarding the acoustic

behavior near the boundaries, and can be di�cult to assign purely based on geometry or

materials properties, particularly when it comes to the characterization of scattering. As

with some other simulation methodologies, an adjustment of model procedure (a term bor-

rowed, in this case, from Ewins (2000) and the �eld of modal analysis) must be carried out

to ensure that the method reproduces measured characteristics. While such a method can

capably model a particular space, the extension to other spaces where the same assumptions

may be invalid, whether due to changes in materials or geometry, may not hold.

As mentioned before, in eschewing the direct description of acoustic pressure and par-

ticle velocity, many of the most important aspects of room reverberation are not feasible

to represent with the energy-stress tensor method: the direct sound and early re
ections

contain perhaps the most salient perceptual details, but cannot be modeled with this ap-

proach. Nonetheless, the stochastic reverberation still makes important contributions to

the overall impression of a given space, and can be di�cult to model in a physical fashion

without computational di�culty as described before, making it a worthwhile research topic

to accelerate the generation of realistic reverberation.
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2.3.5 Advantages

One practical advantage of the EST approach is that the sample rates used can be very

low owing to the low modulation frequency of the energy density. This is particularly

advantageous as the frequencies we actually intend to model with the method are those above

Schroeder's frequency, and extending to a full band representation above that. This crossover

frequency corresponds to wavelengths that are of comparable lengths to the dimensions

of a room, and typically falls below 200 Hz, even for small rooms. Performing a wave-

based simulation above this frequency range can be challenging as well as computationally

expensive due to the fact that the size of the elements required is inversely proportional to the

highest representable frequency. This means that a doubling of the sample rate leads to an

8-fold increase in algorithmic complexity and storage requirements. Conversely, the sample

rate required for the EST method depends only on the rate of decay of the energy density,

and numerical stability is possible with elements on the order of a meter, independent of the

frequency band in consideration. This comes with the added advantage that discretization

of the space does not change for di�erent frequency bands; in e�ect, a single meshing is

su�cient for all of the regions of interest, eliminating complications common to wave-based

methods such as adaptive meshing or higher order methods.

This quadratic improvement in speed is notable for large spaces, especially those that

enclose volume in all 3 dimensions, as the number of elements grows particularly quickly

compared to long or 
at spaces. That a simulation of the stochastic reverberation above a

given frequency might be accomplished with a single, very coarse meshing thus represents

an extreme economization over other wave-based methods that are highly dependent on

element size.

Another result of the low sample rate requirement is that the corresponding spatial

discretization can result in a similar mesh size as other low-frequency wave-based simulations.

In a hybrid real-time auralization scheme that can accurately represent modal phenomena,

these low-frequency pressure simulations would be required, necessitating their own meshing

step. Because of the large spatial discretization, however, a single meshing of the problem

domain could be utilized for both a pressure-based room acoustic simulation as well as for the

EST method, resulting in increased computational e�ciency in cases with changing geometry

as well as reduced complexity in the implementation of a resulting hybrid acoustical scheme.



Chapter 3

Frequency Dependence and

Validity of a 1D Model

3.1 Introduction

Due to the assumptions that underlie the domain of applicability of stochastic reverberation,

speci�cally the di�use �eld criteria, we expect there to be a dependence on frequency regard-

ing the validity of the EST model as well as a minimum threshold of di�usion required to

be able to qualify the sound�eld as stochastic. These characteristics are expected to change

from room to room, as depending on the geometry, absorption, and presence of scattering

surfaces, the relative composition of an impulse response may be dominated by modal or

specular phenomena to the point where attempting to �t a stochastic model may not make

sense. To that end, validating the frequency ranges where the EST method can be expected

to function is an important part of understanding its limitations.

Previously, the method was demonstrated to function in the 1000 Hz frequency band

for both 1- and 2-dimensional spaces: a long hallway with some recesses and a chicane,

and an open-plan o�ce with a number of columns and other di�using objects. We chose to

refocus on the 1-dimensional case of a hallway as the boundary conditions and analysis are

somewhat simpli�ed.

The full document referenced in this chapter (Meacham et al. (2019b)) is reproduced in

Appendix A.1.

26
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3.2 Parameter �tting

This chapter is an exploration of the relative e�ects of the two boundary condition parame-

ters in the 1-dimensional EST model,� and � . As mentioned previously, these parameters

represent the Sabine absorption and the so-called scattering coe�cient, respectively, though

their role in the 1-dimensional solution of the EST model is somewhat intertwined as will

be shown in this section. Up to this point, these coe�cients have been represented in the

volume equations for the EST, playing a role in the de�nition of the boundary of a hallway,

even if this is not the same as a typical boundary condition for a system of di�erential equa-

tions. Shortly, the ends of the hallway will be closed with a traditional boundary condition

at the extrema of the 1-dimensional problem.

Furthermore, we would like to relate these parameters to frequency-dependent phenom-

ena in real rooms in order to assess if it is possible to reproduce the sound�elds, and, if so,

to learn more about the required combinations of coe�cients. As we are comparing directly

to real spaces, we furthermore propose direct observation of the parameters by exhaustively

simulating many combinations and observing the resulting changes in the predicted time-

varying energy density. For this reason, we will use the �nite di�erence time domain (FDTD)

discretization described in Dujourdy et al. (2017), and detailed below in Section 3.2.3.

We assume that if a combination of parameters produces an energy density that by some

measure matches the sound�eld in a real space, then the real sound�eld is representable with

the EST approach. As previously mentioned, we expect the real sound�elds to be more or

less di�use depending on frequency, therefore we will also evaluate these matches as they

pertain to a particular octave band. We propose two speci�c measures in Section 3.3 below.

3.2.1 Telegraph equation

Now, we revisit the original appearance of� and � in the context of the 1D EST equations

in order to understand their context within the present experiment. These terms are a

result of the energy balance and momentum balance de�ned in the dimensional reduction by

integration as described in Section 2.3.3. As these two coe�cients are the only free variables

in the 1-dimensional EST approach, by de�nition, they completely de�ne the boundary

conditions, making the analysis of their e�ects on the resulting energy density simulations

also a complete accounting of the sound�elds the method is capable of representing (for the

speci�c geometry at hand).

As a reminder, we previously arrived at a pair of coupled equations illustrating the
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conservation of energy density and sound intensity, that is, Equations 2.21 and 2.28:

1
c

@t E + @x Jx = �
A
�

E;

1
c

@t Jx + @x E = �
D
�

Jx :

(3.1)

Furthermore, we de�ned the modi�ed absorption and scattering coe�cients A and D as

follows:

A =
�

1 � �
2

;

D =
�

1 � �
2

;

(3.2)

where � and � are the Sabine absorption coe�cient and the scattering coe�cient, respec-

tively.

From the form given in Equation 3.1, Dujourdy et al. (2017) developed the system by

solving for the partial spatial derivatives with respect to the energy density and sound

intensity.

(
1
c

@t +
A
�

)E = � @x Jx ;

(
1
c

@t +
D
�

)Jx = � @x E:

(3.3)

Since in the �rst equation, we have an expression in terms of the spatial derivative of

the sound intensity, and in the second equation, we have an instance of the sound intensity,

we notice that we may take a spatial derivative of the second equation and use the result to

eliminate the sound intensity in lieu of a second order expression in energy density.

That is,

� @x Jx (
1
c

@t +
D
�

) = @xx E

= (
1
c

@t +
D
�

)(
1
c

@t +
A
�

)E:

(3.4)

With some reorganization, and then expanding terms, we arrive at a form called the
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telegraph equation:

0 = (
1
c

@t +
D
�

)(
1
c

@t +
A
�

)E � @xx E

=
1
c2 @tt E � @xx E +

A + D
�c

@t E +
AD
� 2 E:

(3.5)

Note here again the symmetry of the modi�ed absorption and scattering coe�cients. This

provides a limiting case in terms of the two coe�cients, because even if their appearance in

the telegraph equation is identical, we must keep in mind that the de�nitions of � and �

permit only a certain range of values. In the case of� , the range is from 0 to 1, and in the

case of� , the range is from 0 to 2. It is for this reason that the smaller of the two coe�cients

drives the absorption in the volume equations. Conversely, in terms ofD , when it is very

small, the momentum 
ux is e�ectively zero, meaning that most of the energy of the system

is transported by the conservation of energy density, a case that resembles purely specular

re
ection. To the contrary, when D is very large, it does not permit any sound intensity 
ow

along the boundary. This is clearly not realistic for any physical space, however, in between

the two extremes, it points to the role of the modi�ed scattering coe�cient in opposing

the di�usion of energy along the length of the corridor by redirecting it into the o�-axis

directions. Since those are not represented in this formulation as a result of the dimensional

reduction, it appears as a loss of energy density, as with absorption, a point that would need

to be revisited in the higher-dimensional case.

3.2.2 Boundary conditions on ends of the hallway

The �nal element that is needed in order to fully represent the EST in the hallway are

the boundary conditions at the ends. The process of dimensional reduction by integration

meant that the boundary conditions along the 
oor, ceiling, and two walls were all integrated

into the volume equations written above as the telegraph equation, however, the physical

behavior of the EST at the ends of the hallways remains unde�ned. Thus, we must introduce

conditions for the ends of the hallway in terms of the energy balance de�ned earlier.

As before, Dujourdy et al. (2017) contend that the absorption at the wall is given by the

energy density in front of it and the normal sound intensity incident on it:

Jx =
AE
4

= A r E; (3.6)

where A is again the modi�ed absorption coe�cient, and A r denoting this special instance

of the coe�cient to distinguish it in the �nal system of equations.

Introducing the sign of the normal n = � 1 at each boundary according to the x coordi-

nate, we may rewrite the second member of Equation 3.3 and replace the sound intensity
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with the expression above.

� n@x E = (
1
c

@t +
D
�

)nJ

= (
1
c

@t +
D
�

)A r E:

(3.7)

This is a Neumann boundary condition as it is speci�ed in terms of the spatial derivative of

the energy density at the boundary.

At this point, we may proceed to a discretization of the continuous equations.

3.2.3 Finite di�erence time domain discretization

Dujourdy et al. (2017) discretizes the telegraph equation (Equation 3.5) with regularly

spaced spatial and temporal samples. Choosing a given spatial sample step �x and time

sample step � t means that the time evolution of the energy density in a particular space

may be modeled with a grid of sample values, where a space of lengthl implies l=� x spatial

samples, and where the number of temporal samplesNs is chosen such that the simulation

runs from t = 0 to a termination time at t = Ns � t . We refer to a speci�c spatio-temporal

sample of the energy density, then, asE n
i , where i indexes the spatial samples andn indexes

the temporal samples.

The second order continuous spatial and temporal derivatives are approximated with

second order central �nite di�erences in time and space. Ignoring truncation error results

in the following expressions that may be substituted into the telegraph equation:

@tt Ejtx =
E n +1

i � 2E n
i + E n � 1

i

� t2 ;

@xx Ejtx =
E n

i � 2E n
i + E n

i

� x2 :

(3.8)

First order derivatives are also approximated with a central �nite di�erence. Again,

ignoring the truncation error, the approximations are:

@x Ejtx =
E n

i +1 � E i � 1

2� x
;

@t Ejtx =
E n � 1

i � E n +1
i

2� t
:

(3.9)

The �rst of these expressions is su�cient to discretize the spatial derivative that de�nes the

boundary conditions at the ends of the domain in Equation 3.7. By de�ning the energy

density at a so-called \ghost node" one spatial step beyond each end of the hallway that
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ful�lls the Neumann condition in terms of the energy density at each of the two boundary

nodes, the next time step may be computed.

Direct replacement of the continuous derivatives in Equations 3.5 and 3.7 with the ap-

proximations above results in a fully-de�ned explicit FDTD scheme for the interior and

boundary samples. The �nal task is to solve for the energy density at the next time step for

each element in the domain and the aforementioned ghost nodes in terms of the current and

previous time steps as well as each node's neighbors. We may simplify the resulting system

by de�ning Cr as the Courant-Friedrichs-Lewy coe�cient, c� t=� x, and collecting common

terms with a = ( A + D)c� t=(2� ) and b = AD (c� t=� )2.

We reproduce the resulting system of equations directly from Dujourdy et al. (2017),

where E1 and Enx are the interior nodes at the boundary of the domain, and 2< i < nx

denotes all of the remaining interior nodes:

E n +1
i =

E n � 1
i (a � 1) + E n

i (2(1 � C2
r ) � b) + C2

r (E n
i +1 + E n

i � 1)
(a + 1)

;

E n +1
1 =

E n
1 (2[1 � C2

r (1 + A r D � x
� )] � b) + 2 C2

r E n
2 + E n � 1

1 (a � 1 + A r Cr )
(1 + a + A r Cr )

;

E n +1
nx =

E n
nx (2[1 � C2

r (1 + A r D � x
� )] � b) + 2 C2

r E n
nx � 1 + E n � 1

nx (a � 1 + A r Cr )
(1 + a + A r Cr )

:

(3.10)

3.2.4 Discussion

With this numerical approximation of the 1-dimensional EST, which upon application of

boundary conditions along the length of the hallway (implicit in the the volume equation)

and on the two extrema (explicitly solved in terms of a ghost node satisfying a Neumann

boundary condition) reduces to a simulation of energy density throughout the space, we

may proceed with our experiment.

As a �nal review of the previous work performed with this model, we note that stability

conditions were derived in terms of� , � , the sampling steps � x and � t, and all other variable

dimensional and physical factors, such as the mean free path and the speed of sound. We

will not reproduce the Von Neumann analysis here, instead simply opting to always choose

a higher sample rate than necessary for stability regardless of simulation parameters. As is

noted in Table 1 of Dujourdy et al. (2017), for � x = 1 meter, a mean free pathlambda = 2

meters, each of which correspond to our simulation setup and the hallway under test, and

considering maximal values for� and � of 0.9 and 1.9 respectively, the maximum time step

� t is 1.32 ms. Thus, as long as we stay within those parameters, we may simulate the

system with any greater sample rate and be guaranteed stability.

Due to the choice of a spatial step of � x = 1 meter in accordance with the characteristic

wavelength of the EST, we have very few samples to compute, even for a very long hallway.
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By comparison, for example, a pressure simulation with cubic elements and the typical Von

Neumann stability condition for second order 3-dimensional wave equation schemes requires

a spatial step between elements � = c
p

3
f s

, such that a simulation capable of representing a

highest frequency of 3 kHz would require a sample rate of twice that, and thus necessitate

over 103 �nite elements to simulate a cubic meter of air, an even smaller volume than what

is covered by a single element for a hallway of this width. Of course, the resolution of such

a simulation is entirely di�erent from that of the EST, but the point is that we should

have no issue choosing a sample rate off s = 1 kHz or higher with so few elements, even

if it gives us no further information. This e�ciency is even more pronounced because this

discretization should hold even for frequency bands that would be extremely demanding in

the pressure-velocity domain: while the frequency-dependent parameters such as absorption

and scattering may change, the modulation frequency of the EST is constant, meaning

that it should be possible to directly model the stochastic reverberation at high frequencies

without a change in the temporal or spatial discretization of the problem domain.

With speci�cation of initial conditions, we have everything necessary to generate 1-

dimensional numerical approximations of the energy density in the spaces covered by the

dimensional reduction assumptions. For all cases in this chapter, the initial conditions were

speci�ed as a temporal Gaussian at the �rst spatial sample, corresponding (as will soon be

noted) with the source position in the real hallways with which we compare the model. This

noticeably reduced ringing caused by introduction of a delta Dirac on the �rst sample as

described in the previous studies. Atf s = 1 kHz, a Gaussian of length 7 samples results in

a magnitude response with more than 50 dB of attenuation at the Nyquist limit.

Now we proceed to the exploration of the solution space covered by this numerical model

in comparison with real spaces to determine the model validity as a function of frequency.

3.3 Measurements

The goal of this study was to understand if and how two di�erent hallways could be modeled

using the EST method for particular frequency bands. To that end, we decided to charac-

terize the hallways as well as the numerical results in terms of two separate decay measures

derived from impulse responses collected in situ or simulated with the EST method. As we

have two free variables in the EST boundary conditions, we knew that two measures would

be required to disambiguate them. Given that � was introduced as an absorption coe�cient

and � was introduced as a scattering coe�cient, the measures were chosen to re
ect the

expected in
uence of each term; speci�cally, the change in reverberation time as a result of

changing absorption, and the change in the distribution of energy throughout a space as a

result of changing the amount of scattering.

To that end, we made physical measurements of impulse responses in multiple locations
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Figure 3.1: Floorplan, alcove hallway

in each of the two hallways, and simulated impulse responses in two numerical models corre-

sponding to each hallway's geometry. From those impulse responses The �rst measure, the

temporal decay of an impulse response, is the well-known frequency-dependent reverberation

time, or T60. Thus, for each measurement position and each frequency band, whether phys-

ical or numerical, using Schroeder's reverse integration approach, as in Schroeder (1965), a

linear �t to the impulse response's energy decay curve was used to determine the temporal

decay rate, regardless of the overall level of the response at a given position. The second

measure we compared we called the spatial decay, which is the slope of the total energy of

each bandlimited impulse response in terms of the distance of the measurement along the

length of the hallway. The point of this measure is to describe the distribution of energy

in the hallway, but it cannot disambiguate entirely the e�ect of absorption compared to

scattering.

For example, given two geometrically identical hallways with di�ering absorption, we

hypothesize that the space with more absorption would exhibit a larger spatial decay, as

each re
ection would lose a greater portion of its energy as it travels down the hallway.

Conversely, in the case of two hallways that are identical in absorptive properties, but di�er

in the amount of scattering, we hypothesize that increasing scattering would also increase

the magnitude of spatial decay, as a greater portion of the sound energy would be scattered

back toward its original angle of incidence, thus concentrating the strength of the �eld near

the source and weakening it further away. Nonetheless, we expect the two measures to be

somewhat independent, allowing us to probe the individual e�ects of� and � .

3.3.1 Geometry

Both hallways under study were of length 45 meters. The �rst hallway was 159 cm wide and

237.5 cm tall, shown in plan view in Figure 3.1. Furthermore, it contained alcoves along the

north wall of depth 80 cm and height 220 cm. The second corridor was 249 cm wide and

248 cm tall at the apex of its slightly curved ceiling, falling to 228 cm at each side wall. It

is shown in plan view in Figure 3.2.
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Figure 3.2: Floorplan, plain hallway

3.3.2 Details

The physical measurements were performed using aSoundField ST250 microphone, anOut-

line GRS omnidirectional speaker, and aMOTU Traveler sound card. The source was

positioned 1 meter away from the end of the hall in each case, 1.5 meters above the ground,

and centered between the two walls. Beginning 1 meter from the source, a spacing of 1 me-

ter was used out to 10 meters to correspond with the simulation discretization given below,

followed by a spacing of every 2 meters to the end of each hallway for a total of 26 sampling

locations. Recordings were made using the the swept sine method (Farina (2000), Farina

(2007)) as implemented in theAdobe Audition plugin Aurora .

For the corresponding simulations, the spatial sampling step was chosen to be �x =

1 meter based on the known modulation frequency of the di�use �eld. For stability, as

previously discussed, the temporal sampling step was set to 1 ms. The the full range up to

the stability criteria of both the absorption and scattering coe�cients � and � was simulated,

such that � ranged from 0 to 0.9, and� ranged from 0 to 1.9. Nonetheless, Figure 3.10 and

Figure 3.11 display only the region with the most relevant combinations of coe�cients for

each hallway. In the hallway with alcoves, the absorption coe�cient � ranges from 0.01 to

0.45, and the scattering coe�cient � ranges from 0.01 to 0.5, whereas in the plain hallway,

the absorption coe�cient � ranges from 0.01 to 0.2, and the scattering coe�cient � ranges

from 0.01 to 0.25.

3.3.3 Results

Physical hallways

The measuredT60s and Spatial Decays for each hallway, di�using and not, are given in

Tables 3.1 and 3.2, respectively. From this table, Schroeder's frequency (Schroeder (1996))

can be computed for each hallway. For the hallway with alcoves,f Schroeder = 2000
q

T60
V ,

where V is the volume of the hallway in cubic meters, predicts a crossover frequency of 81

Hz, whereas the plain hallway's crossover frequency is predicted to be 146 Hz.

The energy sums at each measurement position are given in Figures 3.3 and 3.5, respec-

tively, and the T60s are shown in Figures 3.4 and 3.6 to demonstrate their relative consistency
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Table 3.1: T60s and spatial decays, alcove hallway

Frequency [Hz] 62.5 125 250 500 1000 2000 4000 8000
T60 [S] 2.29 0.35 0.38 0.39 0.43 0.35 0.33 0.30

Spatial Decay [dB/m] 0.63 0.49 0.88 0.94 0.66 0.54 0.66 0.84

Table 3.2: T60s and spatial decays, plain hallway

Frequency [Hz] 62.5 125 250 500 1000 2000 4000 8000
T60 [S] 2.31 1.45 0.64 0.73 0.73 0.45 0.34 0.25

Spatial Decay [dB/m] 0.04 0.19 0.07 0.10 0.40 0.36 0.54 0.69

along the length of the hall. In each case, multiple measurements were averaged at each

position to ensure accuracy.

Numerical model

An example simulation of the energy density in the alcove hallway is given in Figure 3.7.

Figures 3.8 and 3.9 show theT60s and spatial decays for all of the combinations of� and

� that produced physically meaningful results. That is, extremely long temporal decays as

a result of the model becoming increasingly lossless are discarded. In Figure 3.8, we have

truncated the longest T60 to 4 seconds for readability.

Since we want to represent one frequency band with a single combination of coe�cients,

we can then compare these values with the desired temporal and spatial decays from each of

the measured hallways. In this regard, we are essentially looking for equipotentials on the

surfaces within a particular threshold from the target value, which shows the combinations

of coe�cients which give a \valid" result for that desired characteristic. Thus, for a given

frequency band in a given hallway, we have two regions of validity in terms of� and � :

one with the corresponding temporal decay, and one with the corresponding spatial decay.

Finally, one may superimpose these two regions, and if any overlap is found, then this implies

that there exists a pair of coe�cients that is capable of representing both spatio-temporal

characteristics for that frequency band.

Figures 3.10 and 3.11 show the regions corresponding to combinations of coe�cients that

produced the same acoustic indices as the measured hallways, for both the di�using and plain

corridors, respectively, as described above. For example, in Figure 3.10, 250 Hz, the blue

band demonstrates the range of absorption and scattering coe�cients for the simulation

that produced a T60 within 10% of the measured value, the red band shows the spatial

decays that were within 10% of measurements, and the green regions are the combinations

of coe�cients that ful�ll both criteria and could therefore be considered as valid coe�cients
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Figure 3.3: Energy measurements, alcove hallway, relative to �rst (closest) energy summa-
tion
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Figure 3.4: T60 measurements, alcove hallway
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Figure 3.5: Energy measurements, plain hallway, relative to �rst (closest) energy summation
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Figure 3.6: T60 measurements, alcove hallway (note that the 125 Hz octave band has been
removed due to spurious values, but was con�rmed to adhere to the value given in Table
3.2)
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Figure 3.7: Example numerical result with energy density in dB, scaled to the initial value
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Figure 3.8: Contours of temporal decay for relevant combinations of absorption and scat-
tering coe�cients, alcove hallway; the scale is reverberation time in seconds
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Figure 3.9: Contours of spatial decay for relevant combinations of absorption and scattering
coe�cients, alcove hallway; the scale is decay slope in dB / meter
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Figure 3.10: Simulated and measured data agreement, alcove hallway

for representing the room in that frequency band.

3.3.4 Alcove hallway

We found that in the hallway with alcoves, every frequency band including and above the

octave centered at 250 Hz had at least one region of validity where the combination of

coe�cients reproduced the measured spatial and temporal decay rates.

In bands where the regions of validity for each individual measure cross, resulting in two

disconnected regions or one signi�cantly overlapped region of model validity, the appropriate

combination of coe�cients can be determined without the need of a threshold. One exception

is the 2000 Hz band, which is similar in some regards to the 125 Hz band, but falls within

our speci�ed error, indicating that even though we expect the �eld to be highly di�use in

that frequency range, we may not capture all of the behavior with the two measures we have

chosen.

One further observation regarding the validity patterns is that the two coe�cients are

nearly symmetric, but not exactly, likely as a result of the small di�erence in the boundary

conditions. Otherwise, in every valid frequency band for the alcove hallway,� and � are

e�ectively interchangeable due to the fact that the smaller of the two drives losses in the

simulation, whether by absorption or redistribution.
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Figure 3.11: Simulated and measured data agreement, plain hallway

3.4 Plain hallway

In the case of the plain corridor, only the octave bands centered at 125 Hz, 1000 Hz, and

4000 Hz exhibited the same model validity criteria. Since the model was not capable of

matching both indices in a number of bands, regardless of the combination of coe�cients,

the sound�eld must not be representable by the EST method. One possible explanation for

the speci�c mechanism of invalidity is that this hallway did not demonstrate a consistent

rate of spatial decay along the length of the hallway in some bands, suggesting more modal

behavior. Since di�using surfaces often act to break up strong, specular wavefronts, it could

be that the lack of di�usion in this space reduced the amount of sound energy directed into

the walls to be absorbed, resulting in a sound�eld that was dominated by a modal e�ect.

This is particularly noticeable when comparing Figures 3.3 and 3.5. Every band in the

corridor with alcoves exhibits spatial decay, evidenced by the decreasing energy compared

to distance for all of the curves. For the non-di�using hallway, however, certain octave

bands exhibit a lack of decay, notably those at 62.5, 250, and 500 Hz, as well as 125 Hz to

a lesser extent. One may argue that in fact, in the higher frequency bands, the validity of

the model actually becomes quite marginal, rather than being rejected outright, suggesting

that the model may still be capable of representing the feeble stochastic portion. In essence,

while the stochastic reverberation was present at higher frequencies, the decay may have

been overshadowed by the direct energy in the chosen measures due to a lack of temporal

windowing.
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3.5 Discussion

Aside from the speci�c question of validity, a number of observations can be made regard-

ing the results of the simulations and �tting procedure. Often in room acoustics, temporal

decays are the primary measure of interest; however, this focus can hide the relevance and

behavior of other measures. For example, one takeaway from Figure 3.10 is the shape of the

T60 curves themselves with regard to the scattering coe�cient. If one ignores the spatial

decay requirement and focuses purely on the temporal decay, one may observe that for the

particular value of absorption coe�cient that admits the widest range of scattering coe�-

cients, that there is a minimum value for the scattering coe�cient such that the temporal

decay is satisfactory, but beyond that point, any scattering coe�cient produces e�ectively

the same temporal behavior.

This phenomenon has been noted in the context of simulation packages implementing

scattering, such as CATT-Acoustic and ODEON. This illustrates the idea that some min-

imum amount of scattering is necessary to accurately predict the reverberation, but as

with the EST model, above that value, the temporal behavior of the response does not

signi�cantly change. What this analysis may be lacking, however, is the change in spatial

characteristics that is shown in these examples, demonstrating that it is still critical to iden-

tify the correct scattering coe�cient and not to overshoot it while focusing solely on the

reverberation time at a particular receiver position. Instead, as shown in the results above,

examining the spatial decay curves demonstrates that changes in scattering coe�cient a�ect

the spread of energy throughout a room (particularly for the stochastic reverberation) much

more strongly across the range of values, meaning that it cannot be chosen arbitrarily.

3.6 Future work

As evidenced by the di�erence in behavior between the di�using and non-di�using hallways,

it is important to note that the present analysis was performed using the entirety of the

impulse responses rather than attempting to window in on a portion known to have more

stochastic behavior. While in the case of the di�using hallway, the stochastic reverberation

was su�ciently dominant to allow the analysis to succeed above Schroeder's frequency, it

remains to be seen if eliminating the direct path and early re
ections from the analysis would

allow matching indices even in rooms where modal or specular behavior is more prominent.

It may even be possible to eliminate coherent re
ections using matching pursuit approaches,

as in Defrance et al. (2009) or Gribonval et al. (1996), leaving only the di�use portion to

analyze.
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3.7 Conclusion

In this section, the validity of the EST method was demonstrated, �nding a lower bound on

the frequency range that it can be used in, at least for su�ciently di�using 1-dimensional

spaces. Furthermore, the strategy of evaluating bandlimited regions of the stochastic rever-

beration, which has implications for an analysis / synthesis approach to auralization of EST

results, was presented and shown to be e�ective in the regions of validity for the corridor

under study. Later in the thesis, we will use these results, both in terms of the frequency

bands of validity as well as the derived coe�cients, to inform an auralization of stochastic

reverberation. Finally, while the approach regarding the transformation of the transmission

line equations to the telegraph equation, subsequent solving for the boundary conditions at

the ends of the hallways, and discretization with a centered time-and-space scheme is com-

mon in numerical methods, next we explore a di�erent formalism that allows us to represent

boundary conditions incorporating absorption and scattering without having to integrate

them into the volume equations for the 1-dimensional case.
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Chapter 4

Sources and Finite Volume

Formulation

4.1 Introduction

In this chapter, we present a formulation of the EST including a source term and present

a di�erent numerical approach to solving the system. We have two goals in comparison

to the previous chapter driving our development. First, while the de�nition of an initial

value problem (or Cauchy problem) is often su�cient for room acoustics as it allows for the

computation of an impulse response, the inclusion of a source term allows the representation

of time-varying source characteristics such as directionality or movement. Of course, many

of these qualities could be simulated by simulating many initial value problems and interpo-

lating between them, however, sometimes such precomputation is not possible or preferable

if a straightforward computation of the resulting �eld can be accomplished without much

more computation. The second goal is the discretization of the EST equations with the

�nite volume time domain (FVTD) formalism, which has certain advantages over the more

common �nite di�erence time domain (FDTD) approach as used in the previous chapter

with the telegraph equation. Furthermore, in doing so, we are interested in seeing if it is

possible to de�ne boundary conditions for the problem without integrating them directly

into the volume equations, but de�ning them strictly at boundary surfaces to allow for easier

representation of spatially-varying absorption or scattering coe�cients.

FVTD approaches have drawn research interest in recent years because the formalism

allows derivation of stability conditions directly from conservation of energy in the entire

problem domain, which is guaranteed to machine precision, compared to Von Neumann

analysis for FDTD approaches which fail on some irregular meshings. The primary di�erence

between these is that a FVTD approach is formulated in terms of 
uxes through surfaces of
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adjacent cells (the \�nite volumes" in question), enabling both a straightforward approach to

implementing unstructured meshes, that is, domain meshings that are irregularly patterned,

as well as the aforementioned conservative properties as a result of tracking the changes

between adjacent cells or the boundary quantities. As demonstrated in Bilbao et al. (2016),

the use of unstructured meshes is particularly important in a room acoustical context for

re�nement of the domain boundaries, not for general voxelization of a particular space (which

may be tessellated regularly as in an FDTD approach). In this case, since the space under

study is entirely rectilinear, the FVTD approach is, practically speaking, equivalent to a

standard FDTD approach; however, the formulation is nonetheless particularly useful, as

will be seen in Chapter 6.

To put the di�erence another way, while FDTD approaches are almost always de�ned

over a regular meshing, that is, with a constant spatial step, FVTD approaches allow for

a much more 
exible meshing of the problem domain, which can play an important role

in accurately reproducing sound�elds when curved surfaces are involved. To the contrary,

the so-called \staircase approximation" necessitated by a purely regular meshing can cause

issues with regards to absorption due to the fact that even as element size decreases, the

surface area of the regular mesh boundaries is decoupled from the true surface area of the

domain to be modeled. While mitigations for this problem exist, like that of a weighting

factor based on the voxelization error as presented in Hamilton (2021), it is nonetheless

preferable to simply match the boundary where possible. A secondary side bene�t is that

because these re�nements are only required to occur at the boundaries, the interior of the

problem may be regularly meshed, as in the FDTD case, which greatly simpli�es post-hoc

analysis (even if it comes with numerical challenges such as dispersion). This makes it

straightforward to parallelize the computation on the interior with a GPU, for example,

while leaving the irregular boundary components to be handled in a serial fashion on a

coprocessor more suited to the problem.

Regardless of whether a system of di�erential equations is solved with an FDTD or FVTD

approach, they are commonly presented as initial value problems, whereby specifying initial

conditions and letting the unforced system evolve throughout time produces the desired

solution. This is particularly useful as it is ideally suited for generating impulse responses,

which could be modeled as simply as a perturbation at a single cell, or with a more complex

distribution derived from a measured or simulated directional response, as in Bilbao and

Ahrens (2020). When considering the forced case, however, phenomena such as feedback

or time-varying source conditions bene�t from the inclusion of a source term in the wave

equation and subsequent discretizations. To that end, we return to Equations 2.6 and 2.9

in order to develop sources in a �nite volume scheme for the EST method.

The full document referenced in this chapter (Meacham et al. (2019a)) is reproduced in

Appendix A.2.
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4.2 Sources

4.2.1 1-dimensional EST

Before proceeding to the 3-dimensional de�nition of sources for the EST, let us �rst return

to a 1-dimensional system with Lagrangian given by Equation 2.2:

L =
1
2

� (@t 	) 2 �
1

2�c 2 (@x 	) 2; (4.1)

where Lagrange's equation gives

d
dt

(@(@t 	) L) +
d

dx
(@(@x 	) L) = 0 : (4.2)

In Chapter 2, we demonstrated the continuity equations in three dimensions, and here

we repeat the process in the 1-dimensional case to ensure our system is consistent. By

de�nition, we may de�ne the EST in terms of the Lagrangian

T =

 
@t 	 @(@t 	) L � L @t 	 @(@x 	) L

@x 	 @(@t 	) L @x 	 @(@x 	) L � L

!

: (4.3)

Writing out the terms in full, we have

Ttt =
1

2c2 � (@t 	) 2 +
1
2�

(@x 	) 2;

Ttx =
� 1
�c 2 @t 	 @x 	 ;

Txt = �@x 	 @t 	 ;

Txx =
� 1
2

� (@t 	) 2 +
� 1

2�c 2 (@x 	) 2:

(4.4)

First, we check if the continuity equation r � T = 0 is validated. Keeping in mind the

partial derivatives of the Lagrangian with respect to time and space using the chain rule,

@t L = @tt 	 @(@t 	) L + @tx 	 @(@x 	) L;

@x L = @tx 	 @(@t 	) L + @xx 	 @(@x 	) L;
(4.5)

we can tackle the �rst line of the tensor.
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@t Ttt + @x Ttx = @t (@t 	 @(@t 	) L � L ) + @x (@t 	 @(@x 	) L)

= @tt 	 @(@t 	) L + @t 	
d
dt

(@(@t 	) L) � @tt 	 @(@t 	) L

� @tt 	 @(@x 	) L + @tx 	 @(@x 	) L + @t 	
d

dx
(@(@x 	) L)

= @t 	
d
dt

(@(@t 	) L) + @t 	
d

dx
(@(@x 	) L)

= @t 	(
d
dt

(@(@t 	) L) +
d

dx
(@(@x 	) L))

=0 :

(4.6)

where we recognize that the penultimate expression is the wave equation.

Similarly for the second line, we again recognize that the result is the wave equation,

validating the continuity equation for the 1D EST.

@t Txt + @x Txx = @t (@x 	 @(@t 	) L) + @x (@x 	 @(@x 	) L � L )

= @tx 	 @(@t 	) L + @x 	
d
dt

(@(@t 	) L) + @xx 	 @(@x 	) L

+ @x 	
d

dx
(@(@x 	) L) � @tx 	 @(@t 	) L � @xx 	 @(@x 	) L

= @x 	
d
dt

(@(@t 	) L) + @x 	
d

dx
(@(@x 	) L)

= @x 	(
d
dt

(@(@t 	) L) +
d

dx
(@(@x 	) L))

=0 :

(4.7)

Now, we introduce a source term and repeat the process:

d
dt

(@(@t 	) L) +
d

dx
(@(@x 	) L) = Q: (4.8)

As the left hand side remains the same, we can see that the divergence with respect to

each line is unchanged, except for the fact that the wave equation does not reduce to zero,

but to Q. Therefore, by inspection, we may begin from the penultimate line of Equations
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4.6 and 4.7:

@t Ttt + @x Ttx = @t (@t 	 @(@t 	) L � L ) + @x (@t 	 @(@x 	) L)

= @t 	(
d
dt

(@(@t 	) L) +
d

dx
(@(@x 	) L))

= @t 	 Q = pQ;

@t Txt + @x Txx = @x 	(
d
dt

(@(@t 	) L) +
d

dx
(@(@x 	) L))

= @t (@x 	 @(@t 	) L) + @x (@x 	 @(@x 	) L � L )

= @x 	 Q = vx Q:

(4.9)

The extension to the 3-dimensional case follows with the same method, and remembering

that J = 1
c E tx as in Section 2.3.3 results in the following system of equations:

1
c

@t E tt + r � J = P =
pQ
c

;

1
c

@t J + r �

0

B
B
@

Exx Exy Exz

Eyx Eyy Eyz

Ezx Ezy Ezz

1

C
C
A = Q = � vQ:

(4.10)

We de�ne our sourceQ to take the form of an arbitrary volume velocity emanating from

a moving membrane into the room. Then, with p and v the pressure and particle velocity,

we want to ensure that the signs for the directions of each quantity are chosen to facilitate

a multipole expansion of the source. For example, a monopole source implies thatQ and

p have the same sign on both sides of the membrane, thereforeQ and p are positive when

the membrane is moving into the volume of the room. To the contrary, the net e�ect of v

should be zero, which demonstrates thatv is positive when the normal of the membrane

pointing into the room is oriented in the positive direction of each axis. A dipole source,

on the other hand, implies that Q and p are each positive on one side and negative on the

other, whereasv does not change sign, validating our choice of directions.

Thus, for a monopole source,P is positive and jQj is zero, whereas for a dipole, bothP

and Q are positive whenv is positive, with jQj = P.

For any arbitrary source, these quantities may be computed as a multipole expansion of

the radiation pattern, decomposing its e�ects into P and Q along the primary axes. Mod-

eling of this sort is common in acoustics, where radiation patterns resulting from geometry

are often predicted with �nite element approaches or edge di�raction models, as in Martin
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and Svensson (2018), for example.

In this case, we disregard the coupling of the source and room volume and take an

anechoic approach when considering input to the system. This is justi�ed by the fact

that we only expect the EST model to represent the stochastic reverberation, and in the

frequency range where that assumption holds, namely where the room's eigenmodes are

overlapping, the free-�eld radiation impedance is dominant. With this system, we are able

to describe and simulate the stochastic reverberation from a large class of source types and

distributions. Because we are able to use such large cells in the numerical simulation of the

system, it is plausible for the system to accommodate the computation of changes to the

source distribution in near real-time, while taking into account the envelope ofP and Q

from an audio rate input.

4.3 Dimensional reduction

By restricting our analysis to the same hallway described in Chapter 3, we can once again

form a tractable system by dimensional reduction. The di�erence in this case is that instead

of using the energy balance and momentum balance derived in Section 2.3.3 in order to

eliminate particular variables and close the system, we attempt to apply them directly as

boundary conditions, preserving the di�erence between transfer of energy along the hallway

and physical actions occurring at the boundaries. What this amounts to is that we will

discretize the entire EST, with one additional assumption based on the fact that the domain

is 1-dimensional. Because we presuppose the geometry to not admit energy density propa-

gation in two dimensions, we may assume thatE tt = Exx . Thus, with the introduction of

our source terms, we have

@t E + r � J = P;

@t J + r �

0

B
B
@

E=3 Exy Exz

Eyx E=3 Eyz

Ezx Ezy E=3

1

C
C
A = Q:

(4.11)

To show the closure of this system and its equality to the earlier FDTD discretization of

the telegraph equation, we must discretize it to demonstrate the variables that are in fact

free and those that are resolved by boundary conditions.

4.4 Finite volume discretization

We will now proceed with discretization of the problem domain in terms of space and

time. As with the FDTD approach used in Chapter 3, this process involves two steps: the
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Figure 4.1: Plan view of an example �nite volume discretization showing geometry subdivi-
sion, intercellular dimensions, and boundary surfaces

subdivision of the domain into regions of �nite extent, and secondly, the approximation

of the temporal derivatives with di�erence equations. In this thesis, we use Bilbao et al.

(2016) as the model for our discretization based on the �nite volume method. The main

idea is that rather than sampling points in the domain as with FDTD, the de�nition of

�nite regions allows the conversion of volume integrals to surface integrals by the divergence

theorem, relating the quantities averaged over a particular volume to the in- and outgoing


ows between neighboring volumes. With respect to room acoustics, this means that we

may convert conservation equations to a summation of 
ows through neighboring volume

connections. In this chapter, we will describe in detail the discretization process and apply

it to our EST system, and in the next chapter, we will describe the boundary conditions

for a pressure-velocity simulation, also formulated with the FVTD approach, which will be

used for auralization and in the �nal chapter's direct computation of EST terms.

4.4.1 Spatial discretization

Now, we discretize the hallway into N sequential rectangular solids that will form the cells

in our FVTD formulation. These cells 
 j (of volume V = lx ly lz=N, where the dimensions

of the hallway are lx ; ly ; and lz with the relationship ly ; lz � lx ). Each cell is associated

with an average energy densityE j and outward sound intensities J jk and J l , depending if

the intensity in question is incident upon another cell or a boundary.

Similarly, by integrating P over each cell and averagingQ over each outward surface, the

indexed quantities Pj and Qjk are also associated with each cell and its neighbors. Further-

more, additional dimensional quantities are computed in terms of the domain dimensions:

h, the distance between cell centroids,S = ly lz , the surface areas of cell-cell faces,Sl , the

cell-boundary face surface areas, andV , the volume of each cell.
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Then, by application of the divergence theorem, we may directly write the spatially

discretized equipartitioned EST:

V
c

dEj

dt
+

NX

k=1

� jk SJjk +
N bX

l =1


 jl Sl J l = Pj ;

1
c

dJjk

dt
+

1
h

(Ek � E j ) +
N;N bX

k;l =1

� jkl
Sl

V
(Exy ) = Qjk ;

(4.12)

where � jk and 
 jl are indicator functions that are 1 if a given cell 
 j shares a face with

another cell 
 k or face on the boundarySl , and 0 otherwise. Additionally, � jkl is an indicator

function for a cell, boundary, and a neighboring cell that has a boundary that shares vertices

with the �rst (\neighboring" boundaries, so to speak). This unique con�guration, which

di�ers from indicators found in Bilbao et al. (2016), is a result of the need to de�ne a

surface over which scattering may take place according to a parallel 
ow, as is the case with

the contributions of sound intensity and normal stress on a given boundary.

Note that while the summations run over all possible cells and boundaries, in practice,

due to the indicator functions, the e�ect is the same as a typical stencil-based algorithm

where the computation at a particular cell is computed in terms of its neighbors. The dif-

ference between this statement and a typical 7-point scheme (as would be the case for a

meshing of regular hexahedral solids such as cubes) is that it has the 
exibility to handle

polyhedra with any number of faces, and in any con�guration, including arbitrary unstruc-

tured tessellations. Of course, in this case, we will be using a rectilinear voxelization, so

despite the change in appearance from a regular FDTD scheme, one may think of these

terms in the same fashion as a stencil, giving the surface area and velocity between a cell

and all of its neighbors on the interior as well as its neighboring boundary faces.

By inspection, we can see that due to the arrangement of cells, the only instances ofJy

and Jz point into boundaries at the edge of the problem domain. As nothing has changed

about our di�use �eld assumption, we may again use the energy balance in front of the wall,

Equation 2.18, J = A
4 E. This replaces all instances ofJ l , resulting in

V
c

dEj

dt
+

NX

k=1

� jk SJjk +
N bX

l =1


 jl Sl
A
4

E j = Pj : (4.13)

Furthermore, we may also recall the momentum balance assumption in front of the wall,

Equation 2.27, D
4 Jx , allowing us to replace the energy 
uxes in front of boundaries with

Exy = DJ=4, resulting in
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1
c

dJjk

dt
+

1
h

(Ek � E j ) +
N;N bX

k;l =1

� jkl
Sl

V
D
4

J jk = Qjk : (4.14)

In fact, the system represented by Equations 4.13 and 4.14 is fully determined: as in the

previous FDTD formulation, it depends only on energy density and sound intensity along

the axis.

This approach has the advantage that it is very straightforward to apply di�erent ab-

sorption and scattering coe�cients at all boundaries without having to solve for a di�erent

boundary condition at the ends of the hallway, a fact that we will return to later, nor

compute mean absorption and scattering coe�cients.

4.4.2 Time domain discretization

Next, the continuous time functions can be discretized by replacing temporal derivatives with

discrete approximations based on di�erences at successive time steps. A detailed description

of this procedure is given in Bilbao et al. (2016) Section IV.

First, a discrete time approximation of the continuous time seriesf (t) by sampling at a

�xed time step T is proposed such thatf n = f (nT ). Then, the forward and backward shift,

di�erence, and averaging operators are

e+ f n = f n +1 ; e� f n = f n � 1;

� + = ( e+ � 1)=T; � � = (1 � e� )=T;and

� + = ( e+ + 1) =2; � � = ( e� + 1) =2;

(4.15)

respectively.

We de�ne the temporal approximations to energy density and sound intensity to be o�set

by half a sample, that is, E n
j and J n +1 =2

jk , and where Pj and Qjk are aligned in time with

J jk and E j . We replace the continuous derivatives in Equations 4.13 and 4.14 to �nd a fully

discrete representation of the system.

V
c

� + E j +
NX

k=1

� jk SJjk +
N bX

l =1


 jl Sl
A
4

� + E j = Pj ;

1
c

� � J jk +
1
h

(Ek � E j ) +
N bX

l =1

� jkl
Sl

V
D
4

� � J jk = Qjk :

(4.16)

Temporal averaging is applied to preserve the time alignment and di�erential relationship

in each equation.
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Figure 4.2: Simulated and measured data agreement, monopole and dipole con�gurations

Then, using the notation e� f = f � , expanding the temporal operators, and solving for

E +
j and J jk gives

E +
j =

E j (1 � cT
V

P N b
l =1 
 jl Sl

A
8 ) + cT

V Pj � cT
V

P N
k=1 � jk SJjk

1 + cT
V

P N b
l =1 
 jl Sl

A
8

;

J jk =
J �

jk (1 �
P N b

l =1 � jkl
Sl
V cT D

8 ) + cTQjk + cT
h (E j � Ek )

1 +
P N b

l =1 � jkl
Sl
V cT D

8

:

(4.17)

This is a realizable two-step FVTD scheme.

4.5 Evaluation and commentary

The resulting scheme was compared to the alcove hallway as in Chapter 3 to determine

whether the implementation was capable of representing the previously measured spatial

and temporal decays, and if so, whether the regions of validity occurred with the same

combinations of coe�cients. Additionally, to test the source implementation, not only were

the previous measurements with a monopole loudspeaker considered, but an approxima-

tion of a dipole source using only the drivers of theOutline GRS omnidirectional speaker

aligned along the X-axis in opposite phase were measured and compared to simulations.

The measurement procedure was identical to that in Section 3.3, with the exception of the
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measurement distances, which were 4, 8, 12, and 16 meters from the source. The simulations

were also performed in a similar manner as before, with a brute force sampling of all possible

modi�ed absorption and scattering coe�cients, the only di�erence being the inclusion of a

dipole source term in the second case. Then, the same processing to compute temporal and

spatial decay rates was followed for both the measured and simulated data. The results are

shown in Figure 4.2. Note that the legends describing colors representing regions of validity

apply to all frequency bands regardless of the �gure they appear in. As before, regions

where both measures are valid, whether for the monopole or dipole case, are highlighted

by the light blue and maroon sections, respectively. Examination of the graphs shows that,

with the exception of the 250 Hz octave band, where the dipole does not exhibit a region

of overlap due to the lower spatial decay, both sources are valid including and above the

125 Hz octave band. Furthermore, comparison with Figure 3.10 shows that the regions of

validity for the monopole source occur at similar pairs of coe�cients, but are not exactly

the same.

One possibility for this discrepancy is the formulation of boundary conditions in terms of

the distribution of energy in front of a set of walls. In the original FDTD approximation of

the telegraph equations, there were always strictly speaking 4 surfaces being integrated over:

in Section 2.3.3, when it is asserted that a quarter of the energy density in the integrated

section impinges upon each wall, the reason for that assertion is that there are four walls.

At cells at the ends of the hallway, however, that is not the case, as the absorption of 5

surfaces must be taken into account. On the other hand, while the boundary conditions

used in this section are treated as being the same on all surfaces including the end caps, and

the assumption that energy propagation is primarily along the length of the hallway was

borne out by the con�guration of cells, it may be the case that due to the 1-dimensional

propagation assumption that a di�erent boundary condition is in fact necessary for the

surfaces at the ends of the hallway.

4.6 Conclusion

In this chapter, the EST method was reformulated in terms of an FVTD approach based

on the velocity potential of a typical pressure-based wave equation. This enables di�ering

geometrical topologies in the case of primarily one-dimensional spaces, like long hallways,

as well as illustrating the di�erence in the e�ects of the modi�ed absorption and scattering

coe�cients when implemented at all of the 3-dimensional boundaries without incorpora-

tion into the volume equations directly. Furthermore, by introducing a source term to the

equations and describing its parameterization in terms of a common model for describing

physical sources, we expand the EST method's capabilities in terms of the types of problems
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it may admit as well as clarifying the relationship between the sound intensity and the direc-

tionality of sources, even in this 1-dimensional case. Finally, while in most room acoustics

situations an initial value problem is su�cient to represent time-invariant phenomena, as is

the case with a single impulse response, interpolation between precomputed results of many

source locations in a wave-based scheme may still be less e�cient than recomputation of a

new source, especially given the e�ciency of the element sizes for the EST. Though we do

not take advantage of it at this point, the inclusion of a source term in the formulation also

admits the possibility of simulating moving or otherwise time-varying sources in a natural

manner. With this new formulation, we now consider how it might be applied in terms of

synthesizing stochastic reverberation from computed energy density pro�les. While in this

and the preceding chapter, matching acoustical indices such as rate of decay and spatial

distribution of energy was the main source of information regarding the choice of simulation

parameters in a given frequency band, we now wish to verify that those measures in fact

satisfy our perception in terms of representing stochastic reverberation.



Chapter 5

Auralization

5.1 Introduction

In this chapter, a hybrid strategy for the auralization of EST-derived energy envelopes is

proposed. The purpose of such an auralization tool is both pedagogical and practical, as it

allows simultaneous veri�cation of the methodology and implementation, while also serving

as an example of the strengths of the EST approach.

The full document referenced in this chapter (Meacham et al. (2020)) is reproduced in

Appendix A.3.

5.2 Hybrid Model

As discussed in Chapter 2, room acoustical models capable of synthesis are often well-suited

for a particular frequential-temporal region of an impulse response. While this can be a

challenge when it comes to reproducing an entire impulse response with a single method,

it naturally leads to the idea of combining synthesized regions from di�erent methodolo-

gies. Of course, this can lead to new challenges, including ensuring temporal alignment or

guaranteeing agreement between energy levels for multiple di�erent methods.

This implies a tradeo� between complexity and speed or accuracy. For example, while

it would be ideal to simply run a wave-based simulation beyond theT60 and up to the

highest audible frequency in order to properly capture modal behavior and di�raction e�ects,

depending on the size of the problem, such a simulation is unlikely to be �nished in less

than a few hours, even on powerful hardware. One recent example of such a study is Fratoni

(2021), whose collaboration with the University of Edinburgh resulted in results up to 4 kHz

at a cost of an hour per second of calculated impulse response, albeit for very large halls. In

contrast, even for the same length of impulse response, limiting the frequency range of such a

60



5.2. HYBRID MODEL 61

Frequency [Hz] 250 500 1000 2000 4000 8000
T60 [S] 0.38 0.39 0.43 0.35 0.33 0.30

Spatial Decay [dB/m] -0.88 -0.94 -0.66 -0.54 -0.66 -0.84
Mod. Abs. Coef. A 0.051 0.051 0.047 0.055 0.058 0.067
Mod. Sca. Coef. D 0.54 0.59 0.38 0.25 0.32 0.41

Table 5.1: T60s, spatial decays, and simulation parameters, alcove hallway

simulation to Schroeder's frequency (for example) and using much larger numerical elements

could allow for simulations to be performed quickly enough to be considered \real-time,"

such that moving sources or other changes to simulation parameters could be recomputed

and presented to a user without perceived latency. The question remains how to �ll in

the missing high-frequency data, for which another method suited to that region may be

selected, often geometrical in nature.

In such a fashion, combinations of methodologies, carefully calibrated to work with each

other in the regions they are individually best suited for, is an attractive way to create

wideband impulse responses much more quickly and accurately than would be possible with

a single method. Many recent auralization approaches, including Murphy et al. (2008),

Oxnard and Murphy (2013), and Poirier-Quinot et al. (2017), use this approach as the basis

for improving accuracy and speed. In this case, we propose a hybrid model integrating

the EST method to represent and synthesize the stochastic reverberation such that the

complementary wave-based and geometric methods are not required to generate data at

high frequencies or with an exponentially growing number of re
ections, respectively.

As in the previous chapters, we focused again on the di�using hallway introduced in

Chapter 3.

5.2.1 EST method

For this study, we used the formulation of the EST de�ned in Chapter 4 in order to deter-

mine its suitability within a hybrid context. As this portion had previously been validated

for monopole and dipole sources in a long hallway with alcoves, we decided to reuse the

coe�cients determined in the �tting process for the hybrid simulation of the same space.

These values can be seen in Table 5.1.

To convert the results from the EST simulation into an auralizable pressure domain

signal, the resulting energy density in every cell can be used as an envelope for a noise

process. Because the simulation is repeated for each frequency band, these envelopes can

be applied to bandlimited noise in each of the speci�ed bands, and summed up to create

a wideband stochastic reverberation representation at each point in the hallway. This is

similar to the process followed in Luizard et al. (2013), where the DEM was used, but for a
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single uncoupled volume and within a hybrid context.

Because the EST method sample rate is much slower than audio rate, it is necessary to

resample the envelopes to the �nal hybrid sample rate in order to ensure smoothness in the

time domain. In the spatial domain, it is also important to interpolate between the cells as

they are quite large. In practice, when sources are unchanging, the results can be cached,

making it simple to move the receiver position.

5.2.2 Low-frequency reverberation

For low-frequency acoustic modeling, we implemented the �nite volume time domain (FVTD)

method from Bilbao et al. (2016) as in Chapter 4, but as in the original paper, in the pres-

sure and velocity domain. The code for this portion of the hybrid response can be found

online, detailed in Appendix B.2. As at the time the implementation was undertaken, there

was no open-source implementation of the method available, so a pedagogical rather than

performance-oriented approach was taken to assist others who are following along with the

original article. Because of the work involved in implementing the method from scratch, we

will detail it here with some speci�city, giving an overview of the method itself as well as

details on our implementation.

As mentioned before, while the primary advantage of a FVTD model is for accommo-

dating �tted boundaries rather than a regular meshing for the entire problem domain (as

is typically the case with FDTD models), here, its usefulness is due to the convenience of

expressing certain aspects of the EST method within the formalism. Because the problem

domain was entirely rectilinear, no edge �tting was required, and we accepted the small mis-

match between the simulation mesh and the true dimensions of the hallway for simplicity's

sake. Often, discretizing a particular space with cubic or rectangular solids is performed by

generating a mesh for the bounding box of the problem domain, then including a cell if its

centroid falls within the problem domain and excluding it if it does not. When a curved

surface is discretized in such a fashion, the result is the so-called \staircase approximation,"

named for the stepwise appearance of the surface. As discussed in Bilbao et al. (2016), even

as cells become smaller and the volumetric approximation becomes closer, the surface area

approximation is somewhat divergent. Typically, the solution is to adopt �tted elements

at the edge of the problem domain, an approach particularly well-suited to the FVTD for-

malism. In this case, however, while many spaces such as concert halls or theaters include

large curved surfaces with important acoustical consequences, the geometry of the hallway

under discussion has no such complications, and therefore we are comfortable eschewing

edge �tting to eliminate staircase e�ects.

A secondary advantage of the approach is that by characterizing the 
ux on every cell

face, a total summation of the energy may be performed such that the entire simulation is
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provably lossless (to machine precision). Additionally, because of the shared architecture of

the code for both the EST and pressure versions, engineering e�ort spent on one could be

applied to the other.

Pressure-velocity FVTD derivation

1
�c 2 @t p + r � v = 0 ;

�@t v + r p = 0:

(5.1)

The derivation of the low-frequency FVTD model begins from the pressure and velocity

equations, equivalent to Equation 2.1. While in the context of the EST model, we started

from the second order velocity potential version, here, it makes sense to begin in terms of

pressure and velocity, as we would like to parameterize boundary conditions and cell-to-cell

interactions in terms of these values to start.

Rather than seeking conservation equations for energy density and sound intensity as in

Chapter 2, the total energy of the system can be de�ned in terms of pressure and velocity

everywhere in the space, as well as the portion impinging on the problem boundaries, where

no motion is expected to take place, but where dissipation will nonetheless occur. The

passivity of terminating impedances and local reactivity is then used to develop a one-

port network representation of boundary admittances that can be �t to empirical data in a

straightforward fashion following familiar circuit synthesis procedures.

This system provides the basis for a conservative simulation of the acoustic �eld which

is then discretized into a numerical method. As the procedure in Section 4.4.1 follows

essentially the same process, but with di�ering boundary conditions, we risk some repetition

here, but due to the di�erence in the handling of the dimensional reduction that was required

previously, we consider it appropriate to cover the development again in terms of pressure

and velocity.

Boundary conditions

Bilbao et al. (2016) use a one-port circuit model to match desired boundary admittances

that relate the sound pressure and normal velocity everywhere at the edge of the problem

domain in a locally reactive manner. The boundary admittance model must be capable of

storing, re
ecting, and dissipating energy, but cannot be allowed to add energy, making a

passive network of resistors, capacitors, and inductors an appropriate model. In the simplest

case of the circuit model, it reduces to a mass-spring-damper system common in boundary

admittance representation, however, by addingM branches of series RLC circuits, more

complicated admittances may be speci�ed. This topology is shown in Figure 5.1. Adding

the requirement that all components must be nonnegative means that at least one capacitor
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Figure 5.1: Boundary admittance model, after Bilbao et al. (2016), consisting of a one
port parallel connection across the boundary pressurep with current equal to the boundary
normal velocity vinc

ensures that the admittance at DC is zero, which prevents the possibility of a mean 
ow in

the direction of the wall.

The admittance of such a network is

Y (x; s) =
MX

m =1

s
L m (x)s2 + Rm (x)s + 1

C m (x )

; (5.2)

where x describes all boundary coordinates ands is the typical Laplace transform variable.

This admittance allows us to relate the sound pressure and normal velocity on the boundary,

where all quantities are Laplace transformed to the s domain, as

v̂inc (x ; s) = Y p̂(x; s): (5.3)

This formulation, with vm as the current in the mth RLC branch, can be summarized

as follows:

vinc =
X

m

= 1 M vm ;

p = L m d
dt

vm + Rm vm +
1

Cm gm ;

d
dt

gm = vm ;

(5.4)

where the additional variable gm represents the energy storage in the capacitor. In short,
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the boundary conditions everywhere in the space may be implemented given an appropri-

ate spatially varying admittance model and a time domain discretization of the temporal

derivatives regarding the mth branch current and capacitor reactance.

Spatial discretization

As before, the problem domain is discretized with some freedom intoN non-overlapping

cells 
 j , each with an average pressurepj , and with outward normal velocities incident on

another cell or a boundary,vjk or vl . All of the other cellular quantities (volume, face surface

areas, intercellular distances, etc.) are identical to those previously presented, though they

remain indexed on a cell-to-cell basis as they appear in the original paper for full generality.

Then, using the same indicator function notation as before, where� jk and 
 jl are 1 if a

given cell 
 j shares a face with another cell 
k or face on the boundarySl , and 0 otherwise,

the �rst order acoustic wave equation system may be written as

Vj

�c 2

dpj

dt
+

NX

k=1

� jk Sjk vjk +
N bX

l =1


 jl Sl vl = 0 ;

�
dvjk

dt
+

1
hjk

(pk � pj ) = 0 :

(5.5)

Temporal discretization

The same time domain discretization notation and interleaving scheme from Chapter 4.4.2,

including Equation 4.15, is also used here to replace continuous derivatives with sampled

approximations thereof. This results in the fully discrete system

Vj

�c 2 � + pj +
NX

k=1

� jk Sjk vjk +
N bX

l =1


 jl Sl vl = 0 ;

�� � vjk +
1

hjk
(pk � pj ) = 0 :

(5.6)

Reintroducing the velocity potential notation v = �r 	 and p = �@t 	 allows rewriting

of the discrete time system above as the commonly-recognized two-step FVTD scheme:

� + � � 	 j +
c2

Vj

NX

k=1

� jk Sjk

hjk
(	 j � 	 k ) +

c2

Vj

N bX

l =1


 jl Sl vl = 0 : (5.7)

Stability and boundary conditions

Finally, the integral energy balance and boundary admittances are used to write a discrete

summation of the energy stored on the interior of the problem, within the capacitances at



66 CHAPTER 5. AURALIZATION

the boundary, as well as that dissipated by resistance at the boundaries. This is a complete

accounting of the energy in the problem domain, and the energetic (and numerical) stability

of the scheme as a whole is predicated on non-negativity of the internal energy, which gives

the following condition relating the simulation time step to cell geometry:

1
Vj

NX

k=1

� jk c2T2
s Sjk

2hjk
� 1: (5.8)

Furthermore, this accounting also gives the update equations for the boundary terms that

allows for the full simulation of the interior and admittances.

In the original article, a further procedure is performed to �t the admittance model to

estimates of materials properties. In the case of our hybrid model, we directly used some

of the calculated coe�cients after con�rming that the overall absorption presented by the

surfaces was in line with theT60s observed in the hallway. While an exhaustive �tting of the

real boundary conditions of the hallway was out of scope for the hybrid model experiment,

and following standardized measurement procedures as established in Fratoni (2021) for this

type of acoustic model would improve the results in this and the following chapter, a similar

�tting procedure was used with this method to characterize and examine the behavior of

acoustical pots at thecaveau phonocamptiqueof Noyon Cathedral, similar to past studies of

acoustical pots, such as Vali�ere et al. (2013). This study was also used as an opportunity

to explore and test the possibility of using and evaluating a completely unstructured mesh

for pressure-velocity simulations due to the importance of curved surfaces within the space,

speci�cally the vault ceiling and support columns. This work is detailed in the master's

thesis of Duval (2020), which was performed under the present author's co-supervision. We

also used the same spatial Gaussian approach to set the initial conditions as speci�ed in the

article, as the low-passed nature of the impulse reduced the ringing of the source at higher

frequencies.

Finally, as demonstrated in the article, one of the advantages of the FVTD approach

is that numerical energy conservation is preserved to machine accuracy. We agree with

the authors' assertion that this property is useful as a debugging tool while writing the

code itself. As shown in Figures 5.2 and 5.3, the sum of energetic quantities was constant

throughout time to within machine precision.

Implementation details

Our implementation of the scheme was created in MATLAB for pedagogical purposes. As

initially the expectation for the code was to support only the version dealing with the EST

method as well as the low-frequency pressure simulations described here, a vectorized im-

plementation was pursued that preserved some readability regarding both problem setup
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Figure 5.2: Summation of energy of internal cells, stored at the boundary impedances, and
the cumulative dissipated energy as a result of resistive terminations for the low-frequency
simulation
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Figure 5.3: Demonstration of energy conservation to machine precision for the low-frequency
simulation
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as well as the solver itself. Speci�cally, our solver was a direct implementation of Equa-

tions 39-41b, rather than optimizing for a matrix-multiplication time-stepping scheme, or

implementation on a GPU.

As a result, for particularly large problems, the lack of object-orientation leads to fairly

extreme ine�ciencies in terms of storage and computation of RLC admittances and cell-

indexed properties such as volume or intercellular distances. Later versions improved the

speed by ameliorating some of these problems, however, the gain in performance is sorely

o�set by the complications required for implementation, and are not yet included in the code

repository. While the indexing scheme used in the implementation is relatively straightfor-

ward and allows for a fairly natural expression of the mathematical operations detailed in

the article, some of the manipulations required to perform certain operations are nonetheless

quite slow under the current scheme, both due to repetition of unnecessary operations as well

as lack of optimization for cache alignment. Despite the relatively straightforward nature

of the vector expressions themselves, it is nonetheless di�cult to exercise the granularity of

control necessary to ensure that SIMD or other pipelining routines are used to accelerate

the highly homogeneous computations. It would be advantageous for future implementa-

tions of the scheme to consider ways of reusing of particular repeated computations that are

unavoidable with the naive implementation, or to switch to a numerical environment with

stronger control over parallelism for computation of the velocity potential everywhere in the

domain at a particular time step.

Hybrid simulation parameters

The simulation sample rate was set according to the highest desired frequency, up to the top

of lowest octave band in the EST method (to ensure overlap in order to perform calibration

later on), but in order to minimize the e�ects of dispersion error, we oversampled by a factor

of 7 per the �ndings of Southern et al. (2011a), leading to a �nal sample rate of 4900 Hz. The

resulting sound�eld everywhere in the space was then lowpassed to the desired maximum

frequency and resampled to the �nal audio sample rate. As with the EST method, when

sources are relatively static, spatial downsampling and interpolation may also be employed to

reduce the overall memory usage, further speeding recomputation when the receiver moves.

While in this case, the FVTD pressure simulation is only run up to a maximum of about

700 Hz, we use the same approach at a higher sample rate in Chapter 6 as a basis for further

exploring EST behavior in the hallway.

5.2.3 Direct path and early re
ections

Finally, for the wideband specular portion of the impulse response, the image source method

(ISM) from Allen and Berkley (1979) was used. There is some freedom to choose the order



70 CHAPTER 5. AURALIZATION

of images that will be used, which will be discussed in greater detail later, but the gist of the

balance comes between representing all of the most prominent specular re
ections without

unnecessarily repeating the less-signi�cant late re
ections (at high computational cost) that

are already covered by the EST method.

5.3 Calibration

5.3.1 Between simulation methodologies

Southern et al. (2011b) and Southern et al. (2013) were used as a model for calibration

between the disparate simulation methods. The sound energy at a distance of 1 meter from

the source was used as a point of reference for all three methods in the octave band centered

at 500 Hz. An arbitrary level was set in each individual simulation type, and then gain

factors were used to match the energy of each signal. Then, upon combining the three

signals into a hybrid by superposition in the time domain, the FVTD method (which is

presumed to be the most accurate) was used as-is, whereas the high-frequency methods are

high-passed above the crossover frequency in order to ensure the non-duplication of energy.

5.3.2 Between simulated results and measurements

Similar to the calibration between simulation methodologies, an energy match at the point of

reference, 1 meter from the source, was performed. The uniform application of the correction

gain means that the spatial decay is preserved, such that a comparison of the sound energy

can be compared as a function of distance in the corridor.

5.4 Evaluation

Evaluation of the simulated impulse responses along the length of the hallway as compared to

measured impulse responses was e�ected using a GUI shown in Figure 5.4. Inspection could

be carried out in three ways: the comparison of spectrograms, the direct auralization of the

impulse responses, or by playback of source material convolved with each impulse response.

A slider at the bottom of the GUI provided a convenient interface for changing the listener

position from 1 meter in front of the source to 42 meters (the maximum observation distance

measured).
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Figure 5.4: A screenshot of the MATLAB GUI used to compare simulated and measured
impulse responses as a function of distance along the hall, both visually with spectrograms
and aurally through the playback of the IRs themselves, or convolved with source material.
In this case, the listener position was slightly past the middle point of the hallway, indicated
by the scrollbar at the bottom of the interface.
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5.5 Results

Informal listening illustrated various characteristics of the auralization system design. Be-

ginning with the interface, feedback to changing the distance parameter was relatively re-

sponsive, and could certainly be improved using an interface better suited to real-time inter-

action. Even with the computational delay triggered upon moving, general trends regarding

the appearance of the spectrograms were apparent and consistent with expectations.

Acoustically, the simulated and measured impulse responses did not diverge drastically

at any point in the hallway, though at no point did they sound identical. The time arrivals of

early re
ections were accurately rendered, as were the overall decay times and absolute levels

of the stochastic reverberation, meaning that on the whole, the impression of the hallway was

approximately the same between both auralizations. Some of the most signi�cant di�erences

were in the decay of the ISM and the low-frequency FVTD portion along the length of the

hallway, leading to slightly di�erent balances between the saliency of the early and late

portions of the impulse response when moving further from the source. These di�erences

appear to be a result of the simulation parameters di�ering from those used in the EST

method, the octave-width calibration used, and the lack of tuning at high frequencies, where

viscothermal losses would have more of an e�ect on the image source re
ections. As a result,

the simulated impulse responses have a brighter tone throughout the hallway, as well as

sounding too di�use near the source.

One di�culty with the ISM in this speci�c space was balancing the order of sources

against the need to represent the particularly important echoes corresponding to the length

of the hallway. For the transverse re
ections, a fairly low order was su�cient to give a good

spatial impression, but because of the strength of repeating echoes along the length of the

corridor, a higher order was needed to continue representing these strong re
ections even as

the stochastic reverberation became more and more dominant in time.

5.6 Future work

A number of improvements are possible within this scheme, as well as for extensions to other

possible hybrid methodologies beyond the approach described here.

While in this case the ISM was chosen for simplicity, it could be changed out for a variety

of other geometrical acoustics approaches better suited to a particular type of geometry. In

this case, with a long hallway, choosing the proper order was more di�cult than expected,

whereas a ray-based or digital waveguide approach may have been more successful at re-

producing the infrequent longitudinal re
ections in an e�cient manner, though the same

cannot be said for volumes of all shapes or sizes.

A variety of computational optimizations were eschewed during development, but in
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preparing a true real-time hybrid model, would need to be taken into consideration. These

include, but are not limited to, caching of particular simulation results, acceleration of

the low-frequency FVTD portion with GPUs, lazily evaluating the resampling operations

required between various methods in the region of the receiver (rather than everywhere),

and further re�nement of the assembly of �lters from the constituent acoustic information.

One �nal note is with respect to the element sizes of the EST method and the pressure-

domain FVTD results. It may be possible that a single meshing of the problem domain

could be utilized for both a pressure-based room acoustic simulation as well as for the EST

method, given the proper scale of discretization for both techniques. In cases with changing

geometry this could prove extremely useful, as well as unifying the storage required and

simplifying any voxelization steps.

5.7 Conclusion

In summary, due to its region of validity, the EST method must be used in a hybrid context

for synthesizing realistic room impulse responses, and this chapter provides a framework for

doing so with the ISM and low-frequency FVTD pressure simulations taking on the non-

stochastic portion of the sound�eld. A simple interface for examining spectrograms and

initiating playback of synthetic and measured impulse responses allowed informal testing of

the design during development as well as ultimately facilitating the evaluation of di�erences

between the real and virtual scene. While further theoretical and practical improvements are

necessary for use of the method as a general replacement for current stochastic reverberation

techniques used in real-time auralization systems, as a drop-in replacement when a speci�c

space has been measured, the EST method appears to be an e�ective and accurate technique

in terms of the measures used to match simulation parameters to the acoustic behavior of the

spaces under study. Extending the methodology to higher-dimensional spaces nonetheless

remains a challenge due to the lack of information regarding the simpli�cations that may be

presumed regarding the EST terms in real spaces. While thus far, our analysis has relied

on the reduction of the system to a 1-dimensional case in order to characterize the members

of the wave-stress tensor and the o�-axis sound intensity directions, we would like more

information about the behavior of those terms in particular spaces to understand what, if

any, assumptions we may make when directly modeling them in the future.
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Energy-Stress Tensor Quantities

6.1 Introduction

This chapter proposes an approach for characterizing the behavior of the EST in particular

regions of a room without exhaustive physical measurement. In opposition to earlier portions

of the thesis, rather than directly simulating members of the EST, instead, we focus on

simulating the velocity potential, from which the relevant terms may be computed.

6.2 Toward 3-dimensional prediction

The 1- and 2-dimensional versions of the EST are tractable because of the dimensional

reduction that is performed, using energy and momentum balances that result from the

geometric and di�use �eld assumptions discussed in Section 2.3.3 in order to �nd bound-

ary condition relationships between the energy density, sound intensity, and the wave-stress

tensor. In each of the lower-dimensional cases, these boundary conditions are present on

at least some portion of every cell in the numerical approximation, meaning that they can

be integrated directly into the propagation equations in a uniform manner, with the \end

boundaries" (those occurring at the extremities of the primary axes of the domain) being

treated specially. In approaching the time-varying 3-dimensional EST, we must �rst under-

stand its behavior further away from the boundaries, but given the di�culty in evaluating

di�use �elds with physical measurements, we decided instead to pursue a computational

approach.

74
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6.3 Pressure domain simulation

In Chapter 5, a �nite volume time domain (FVTD) scheme was utilized to perform the

simulation of low-frequency acoustic waves. This chapter utilizes the same approach to

generate wideband pressure signals that are the basis of the analysis to come, requiring a

much higher sample rate and smaller element sizes. Whereas before, the highest frequency to

be simulated was determined in concert with the crossover point to stochastic reverberation

and the desire to perform simulations as close to real-time as possible, the much higher

computational requirements for generating oversampled results that are valid through the

same region as the EST method means that the simulations are now e�ectively o�ine only,

though porting our CPU-based implementation to utilize GPUs (as in Hamilton et al. (2016)

would greatly improve runtime. Nonetheless, the FVTD approach is particularly convenient

as the parallels between the pressure domain formulation from Bilbao et al. (2016) and the

EST formulation from Chapter 4 mean that information about the unknown terms in the

energy-stress tensor can be derived in terms of the velocity potential of the pressure domain

simulations.

In this case, we performed a simulation of the hallway with alcoves atf S = 16000 Hz.

With 8x oversampling, this implied the highest valid frequency was 1000 Hz, which as pre-

viously demonstrated overlaps the region of stochastic reverberation. Otherwise, we used

the same boundary conditions and approach described in Chapter 5, just with a higher fre-

quency limit. Because of the much larger simulation requirements imposed by our somewhat

unsuitable implementation as described in Chapter 5.2.2, both in terms of time and mem-

ory, a remote computation toolbox was very useful in managing asynchronous launching

and collection of simulations and their results. More details on this setup can be found in

Appendix B.3.

6.3.1 Ambisonic microphone approach

Performing the aforementioned pressure domain simulation using the FVTD method over

a collection of axis aligned cubic cells gives a convenient representation for computing the

components of the energy-stress tensor. Because the faces of the cells are perpendicular to

a particular axis, the unit vectors of the velocity 
uxes that pass through the faces are also

axis aligned. While in the case of an unstructured mesh it would be possible to extract the

projections of each face onto the axial vectors, simply using cubic elements greatly simpli�es

the analysis. Furthermore, as explained in Chapter 5, we are comfortable treating the space

as rectilinear, which eschews the need for edge �tting and a more complicated computational

scheme, as the lack of any curved surfaces implies that the staircase e�ect will not be present

for the problem domain.

At the smallest scale of a single cell, extracting the pressure and velocity 
ux from
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the local velocity potential is akin to making a measurement with a �rst-order ambisonic

microphone. This makes it straightforward to compare to real measurements to ensure the

veracity of the pressure simulation results. In this case, using the standard nomenclature

for B-Format audio, the average pressure in the cell corresponds to theW channel, or

the omnidirectional output, and the net velocity through the cell (resulting from each axis

aligned pair of faces) corresponds to theX , Y , and Z channels, or the linear directional

signals.

Of course, the terms of the energy-stress tensor can also be computed at this scale, but

local variation arising from the high modulation frequency of pressure waves means that

the extracted values at a particular point in space may not be representative of the local

behavior more generally. In order to account for this, as with many energy based methods,

spatial and temporal averaging are used to examine global trends in the components of the

energy-stress tensor.

The quantities of interest can also be averaged over an amalgamation of cells in order to

successively approach the large cells that are \properly sized" for the modulation frequency

of the EST method.

6.4 Derivation of EST terms in FVTD formalism

One possible approach to calculating the terms of the energy-stress tensor in terms of a

computed velocity potential �eld is to simply refer directly to their de�nitions as described

in Morse and Ingard (1968), and averaging over collections of nodes.

Thus, by de�nition from Equations 2.3, 2.4 and 2.7, we have:

E tt =
�
2

(
1
c2 j@t 	 j2 + jr 	 j2);

E ti = � �@t 	 @i 	 ;

E ii =
�
2

(
1
c2 j@t 	 j2 +

X

j

� ij j@j 	 j2);

E ij = �@i 	 @j 	 ;

for i; j = x; y; z with � ij = 1 when i = j or -1 otherwise.

Each of these equations can be evaluated on a cell-by-cell basis and averaged over a

collection to arrive at an approximation of the EST terms in a particular region.
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Figure 6.1: Corridor 
oorplan with dimensions

Figure 6.2: Corridor 
oorplan with sections, source, and measurement positions, with the
subjects of Figures 6.4, 6.5, and 6.6 labeled respectively

6.5 Measurements

While the point of simulating an approximate sound�eld is to be able to exhaustively enu-

merate its behavior everywhere in the space, nonetheless, some connection to reality must be

established through comparison with measured data. In this case, a lack of roboticization,

or indeed, a space dedicated to measurements (as the corridor itself is a regular workplace)

meant that it was neither possible nor necessarily desirable to collect an extreme number

of measurements within the space. Instead, to facilitate comparison with the simulations, a

series of measurements were made along the length of the corridor, as well as within each

alcove, corresponding to the volumes to be averaged as discussed above.

The equipment and software used to perform these measurements were as follows. Since

we are concerned with the spatial impulse response, a �rst-order ambisonic microphone,

the Core Sound TetraMic, was used to capture not only the pressure �eld at each sampling

position, but also its gradient, allowing inference of the velocity at the measurement position,

consistent with the response of a single cell in the FVTD simulation. The exponential sine

sweep method Farina (2000, 2007) was used to capture the impulse responses, generated

using the Adobe Audition plugin Aurora, played back over an Outline GRS omnidirectional

speaker, with a MOTU Traveler sound card as the input and output interface. The sweep

length was 20 seconds at a sample rate of 44100 Hz. A digital source level gain was chosen

to maximize the signal-to-noise ratio without introducing distortion at the initial recording

position.

The source was positioned 1 m away from the right end of the hall in Figure 6.1, 1.5
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Table 6.1: Spatially averagedT60s.

Frequency [Hz] 62.5 125 250 500 1000
T60 [S] 2.29 0.35 0.38 0.39 0.43

m above the ground, and centered between the two walls. The microphone was also placed

1.5 m above the ground, and was moved to each measurement location on the same plane.

The horizontal \centroid" of each section of hallway beginning with the section in front of

the �rst alcove was the targeted measurement position, where the sections are de�ned using

the two side walls of each alcove and the upper wall to divide the hallway into 22 volumes

(one of which contained the source). These sections were classi�ed into three types, either

hallway, junction, or alcove. These distinctions, as well as the measurement positions, can be

visualized in Figure 6.2. As the microphone was moved further from the source, its gain was

occasionally digitally readjusted to ensure full dynamic range in the recordings, and these

changes were recorded in order to recover the true level for each measurement location.

Converting the A-format signals (the individual channels of each microphone capsule) to

B-format as well as applying the individual microphone's calibration �le was accomplished

using the VVAudio VST plugin VVEncode. To facilitate the processing of the measurements

in bulk while reducing opportunities to introduce human error, the batch converter feature

of Cockos REAPER was essential, as a GUI-enabled host was required for the plugin. In

a similar fashion, rather than using the Aurora plugin to perform the deconvolution for

individual recordings directly in Audition, the generated inverse sweep was instead saved

and used in a MATLAB script that produced impulse responses that were bit-accurate to

plugin-processed versions and could be evaluated rapidly in parallel. While Audition 3.0

(the version used with the Aurora plugin) does have batch processing capabilities, it was

deemed too brittle, leading to the development of the MATLAB processing script.

The measurements, plotted according to their linear distance along the hallway, can be

seen in Figure 6.3. The measurements taken within an alcove are colored red, all other

sample positions are blue, and an estimated time of arrival according to distance (assuming

c = 343 m/s) is provided in black.

From these measurements, octave bandT60s and Schroeder's frequency could be com-

puted. T60s were consistent along the length of the hallway, and are given in Table 6.1.

Schroeder's frequency, commonly considered the cuto� below which the room response is

dominated by modal e�ects, is given by f Schroeder = 2000
q

T60
V , where V is the volume of

the hallway in cubic meters, predicting a crossover frequency of 81 Hz.
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Figure 6.3: Measured impulse responses along the length of the hallway
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6.6 Preliminary results

In this case, we subdivided the hallway into medium-sized cells of various con�gurations

in order to examine the coupling between regions near the boundaries and in open space.

For clarity in discussing results, we recall that the simulation and mathematical coordinate

system was chosen such that the length of the hallway was in the X direction, the width

in the Y direction, and height in the Z direction. The hallway was de�ned as a collection

of rectangular solids, with a line of volumes representing the main space of the hallway,

delineated at each alcove edge, as well as an adjacent volume for each alcove. From this basic

voxelization, subdivisions into other con�gurations is relatively straightforward, and provides

a natural interface for examining behavior in particular regions. For these preliminary

results, a mesh division of 3 cells per side (for a total of 27 cells per volume) was undertaken,

which resulted in a layer of cells that touch the boundaries and a central series of cells that

is completely in free space.

The pressure simulation was carried out for half a second, resulting in the de�nition of

the velocity potential everywhere in the space. As in the previous simulations, the source

was a spatio-temporal Gaussian centered 1 meter from the end of the hallway and 1.5 meters

o� of the ground with a variance of 0.2m2. The source signal was also Gaussian in time,

a 7-sample window. As the sample rate after downsampling was 2000 Hz, there are 1000

temporal samples for each of the signals. Then, according to the de�nitions above, the EST

values were calculated by averaging over the contiguous regions created by the subdivision

of each section of the hallway.

The resulting time series for each term in three selected regions, each of which was the

\central" amalgamation of cells from each of their respective volumes, are shown in Figures

6.4, 6.5, and 6.6. We have grouped the energy density with the diagonal terms of the wave-

stress tensor, the sound intensity, and the o�-diagonal terms of the wave-stress tensor each

on separate plots for clarity.

The region depicted in Figure 6.4 was centered vertically and horizontally in the hallway,

with a centroid 14.95 m from the end, an average of 9450 cells. This implies a round-trip

travel time to and from the far end of the hallway of 0.176 seconds, about 353 samples at

the current sample rate, and 0.088 seconds or 176 samples round-trip to the nearer (source)

end of the hallway. The \junction" region depicted in Figure 6.5 was 3 m further down

the hallway, an average of 7560 cells, making its long round-trip time slightly shorter at

0.159 seconds or 318 samples, and its short round-trip slightly longer for 0.106 seconds or

211 samples. Finally, the alcove region in Figure 6.6, which was the third alcove from the

end of the hallway, was located at the same distance as the \junction" region but was o�set

horizontally by a distance of 1.2 m, an average of 3840 cells. Given this small change in

horizontal o�set, the distinct behavior in this region is remarkable.
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Figure 6.4: Energy-stress tensor terms in the center of a section of corridor between alcoves
labeled in Figure 6.2

Figure 6.5: Energy-stress tensor terms in the center of a section of corridor in front of an
alcove labeled in Figure 6.2
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Figure 6.6: Energy-stress tensor terms in the center of an alcove labeled in Figure 6.2

6.6.1 Hallway section

A number of phenomena are apparent from the computed results. Beginning with the

hallway section in Figure 6.4 as the base case, we can immediately identify some of the most

relevant acoustical events in the impulse response. First is the presence of three major peaks

in energy: the direct sound (which also likely subsumes the �rst re
ection o� of the end of

the hallway behind the source) and two re
ected wavefronts. As expected, when examining

the sound intensity in the x direction (E tx ), the direction of travel of each of these wavefronts

can clearly be seen, switching with each re
ection at the end of the hallway.

The next point of note is the relative agreement betweenE tt and Exx , implying that

most of the energy density in the hallway is driven by the x-aligned component. To the

contrary, the Eyy and Ezz terms are also grouped fairly closely, and for the most part,

oppose the motion of the energy density. This implies that in these sections, kinetic energy

is the dominant form of energy storage, a surprising result. (Note that the close agreement

of these pairs of terms may result in the appearance of two lines upon �rst inspection of the

plot.)

As expected, all of the o�-diagonal terms of the wave-stress tensor are non-zero, but

are nonetheless much smaller in magnitude than the diagonal terms. Interestingly, the

increased power in theExy component suggests a much stronger coupling between the X

and Y dimensions than that of X and Z or of Y and Z; that is to say, more energy is
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transferred from the longitudinal waves into crosswise waves. This makes sense as the

alcoves themselves were oriented along the width of the hall, and, being nearly the full

height as the main ceiling, primarily presented surfaces that would cause di�raction in the

direction of the alcove.

Second smallest is theExz component, illustrating some transfer of energy from longi-

tudinal to vertical waves, likely due to scattering o� of the ceiling, which was subjectively

rougher than the smooth walls. TheEyz component is minimal in the entirety of the exam-

ined region, demonstrating that the small amount of non-longitudinal energy tended not to

change from crosswise to vertical, likely due to the lack of di�racting surfaces oriented in a

fashion that would facilitate such transfer.

6.6.2 Junction and alcove sections

Comparison of the hallway region with a region adjacent to an alcove as well as an alcove

itself also reveals di�erences, primarily in terms of theEyy , Ezz , and o�-diagonal components

of the wave-stress tensor. Of course, one of the most obvious di�erences is the change in

arrival times for the direct sound as well as the increased spacing of the re
ections due to

being closer to the middle of the hallway's length. In the junction volume, the most distinct

change comes from the non-X components of the wave-stress tensor which do not express

the same degree of opposition to the energy density andExx terms as in the hallway section.

This is closer to our expectation of reality. To the contrary, however, within the alcove, these

terms again shy away from zero in the positive direction, equally as surprisingly.

Nonetheless, there are other interesting phenomena occurring at the junction and within

the alcove. One observation is that at the junction, Exy is much stronger upon returning

re
ections, whereas it is quite weak in the hallway section. This is even more pronounced

within the alcove, suggesting the strength of the presence of the alcove in curvature from

the length of the hallway to the width presented in both directions. Furthermore, the sound

intensity in the Y-direction is fairly similar in the hallway and junction, but points much

more strongly within the alcove, suggesting the di�racted wavefronts in the region.

6.6.3 Discussion

First and foremost, noting the general trend that E tt and Exx are similar in magnitude

throughout the hallway speaks to the idea that energy transfer is primarily driven by the

sound intensity in the X direction, validating the �rst of the assumptions made in previous

dimensional reduction approaches.

Furthermore, given the relatively small magnitude of the momentum 
ux terms, Exy ; Exz ,

and Eyz particularly in the alcove means that in some cases the decorrelation assumption

may hold.
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Having access to spatially averaged versions of the EST terms for the �rst time is a

powerful tool, but also calls into question how we may learn from these observations. One

desirable outcome would be de�nition of scattering or di�usion coe�cients that could directly

inform simulation of the EST based on the ratio of energy density, sound intensity, and wave-

stress tensor components. This points to the evaluation of other interesting or modi�able

room layouts, perhaps as part of a large dataset, to extract more information regarding the

behavior on average of the various terms in regions of free space as well as near strongly

di�using geometry, whether re
ectors, di�users, or other room features.

Further analysis of this data is required, speci�cally regarding the analysis of other re-

gions and surfaces within the hallway. For example, the behavior of the EST near boundaries,

speci�cally along long sections of the hallway as well as around corners going into alcoves,

may be particularly revealing. Also important is the isolation of the true stochastic reverber-

ation. While analysis of the major sound energy packets traveling the hallway has already

provided much fodder for analysis, the relationship of these terms to the representation of

the stochastic reverberation is an important goal that should not be forgotten. Particularly

in between regions of strong re
ections, further characterization of the decay from passing

wavefronts may reveal further insights regarding the relationships between energy density,

sound intensity, and the wave-stress tensor, and may help to de�ne how to discern between

the early re
ections and di�use �eld in both analysis and synthesis contexts.

6.7 Riemannian tessellation

Previous e�orts to couple the known boundary conditions near the edge of the problem

domain through a \translation layer" to the interior free-�eld solution to the EST were

shown to be incorrect in Polack (2020). The reason for this was a result of the energy

balances under consideration failing to admit absorption.

This provided the impetus for recent investigation into geometric characterization of

di�usion, which we will examine now as an alternative approach to direct parameterization

of the EST method for a given space. Detailed in Polack et al. (2021) as a preprint, the main

idea is to approach the theory of scattering based on image sources calculated by tessellation

of a given space, that is, by repeated tilings of the room geometry depending on the angles

at its vertices. While this idea is well known in the case of rectangular rooms where it has

long been used with respect to the image source method, for example, it is more challenging

to de�ne in polyhedral rooms, which leads to the use of Riemannian geometry to de�ne the

space while preserving the familiar idea of tessellations.

In geometrically mixing spaces, di�usion occurs regardless of the scattering coe�cient on

any given surface, but rather, as a result of scattering on curved surfaces within the room.

This is distinct from geometrically imperfect real rooms whose shape would suggest that
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they would not be mixing, meaning that one might expect only a few directions of travel

to be supported, but achieve it nonetheless due to construction imprecision and surface

scattering. The goal of this approach is to characterize the di�usion process in these types

of mixing rooms in terms of their geometry. It is important to note that perfect polygonal

or polyhedral rooms are not mixing, due to the discretization of ray direction that occurs

in them - to the contrary, only spaces with at least one curved surface on the boundary

have been proven to be mixing, such as the stadium introduced by Bunimovich (1979) in

dynamical billiard theory.

In short, the behavior of re
ections for particular dihedral angles are analyzed in terms

of the image sources they produce. Successive re
ections in a particular room imply a

tessellation of the space, similar to the familiar rectangular case, but in this case, with

the possibility of other shapes (though the concept of ray direction is still preserved). It

is demonstrated that for right angles, the resulting Riemannian space is Euclidean, which

corresponds to the non-mixing nature of rectangular rooms and the linear increase in image

sources at every order. For obtuse angles, however, the curvature is negative, and the

number of image sources grows exponentially, as is the case with mixing rooms, such that

we may refer to polyhedral spaces with this type of vertices as \pseudo-mixing." Using this

approach, the rate of increase in image sources can be computed based on the number of

faces, edges, and vertices in the room - a purely geometrical way to determine the mixing

abilities of a given space.

Finally, by considering each image source as a wavefront, frequency dependence may be

taken into account, demonstrating di�raction in a natural way. This process is performed

by considering the conservation equations from the EST method across each re
ection angle

of the Riemannian tessellation, each of which introduces acceleration to the energy-stress

tensor.

With this formalism, it should be possible to compute position- and direction-dependent

scattering coe�cients based only on the geometry of a particular space. Then, coupling a

structured interior mesh implementing the existing EST method with a boundary layer that

introduces scattering appears to be a promising path to representing geometric di�usion ef-

fects without physical or virtual measurements and an adjustment of model procedure. This

idea is related to the stated range of the scattering coe�cient brie
y discussed in Chapter 3.

In Dujourdy et al. (2017) section 5.2, the meaning of scattering coe�cients greater than 1

is brie
y discussed, and is shown to be indicative of energy staying in a particular region as

� tends toward 2. While non-physical, this is related to the idea of directionally-dependent

coe�cients discussed above, where non-symmetric surfaces may facilitate transfer of energy

in one direction, but could re
ect a much greater proportion of incident energy in another,

meaning a single bidirectional scattering coe�cient may be insu�cient. Hypotheses regard-

ing the de�nition of these coe�cients in terms of room geometry thus remain an interesting
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opportunity for future work.

6.8 Discussion

While the analysis of these results is not yet complete, the strategy points to two possibilities

for further characterization of the EST method. First is for the constitutive equations re-

lating the wave-stress tensor to the known energy density and sound intensity in free space,

which would allow for direct simulation of the full energy-stress tensor in a space with bound-

ary conditions de�ned only in terms of the modi�ed absorption and scattering coe�cients

currently de�ned on the boundary. Second is the empirical relationship between room geom-

etry and the behavior of the di�use �eld in a room. For example, while characterization of

the presence or prevalence of di�using surfaces in a particular room is accomplished heuris-

tically through the modi�ed scattering coe�cient D , predictively modeling a space requires

some sense (beyond simple scattering) of the geometry in order to determine how quickly

it di�uses energy. While this is di�cult to approach using only the EST method due to

the size of the elements and the di�culty of modeling the introduction of occluding surfaces

within such a volume, the ability to accurately model a space in the pressure domain and

use the averages of particular volumes to determine a more meaningful di�usion coe�cient

is now within reach.

6.9 Future work

With these techniques, the relationship between the Sabine scattering coe�cient and the

EST scattering coe�cient could now be clari�ed based on simulations of a particular space.

Whereas physically verifying the agreement between the two would require a carefully cali-

brated reverberation chamber or other physical acoustics expertise, this approach provides a

basis similar to past work on the EST where simulation parameters may be matched directly

to measured data (in this case, measured from the pressure simulation) by brute force. In

the case where the room geometry is unchanging, a relation between changing absorption or

scattering coe�cients in the pressure model may be correlated with a proportional change

in EST parameters that produce the same stochastic reverberation directly.

Edge �tting, long known to be important for �nite di�erence and �nite volume ap-

proaches, is also a critical future implementation target for the method, and would allow

modeling of non-rectilinear spaces as well as admitting more complicated interior geometry

that, in the pressure domain model, would result in increased di�usion. Thus, further stud-

ies may attempt to relate the presence and density of thin re
ectors in a reverberation-style

chamber, which would be directly modeled in the pressure simulation case, to changes in
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the absorption and scattering coe�cients in the EST simulation in cells that contain (but

do not physically represent) di�racting and re
ecting surfaces.

Thus, between characterization of the changes in simulation parameters in the cases

where materials properties on boundaries change but the geometry is unchanging, and vice

versa, a more complete picture of the behavior of the EST terms as well as that of the di�use

�eld itself may be better understood.

6.10 Conclusion

A method for directly calculating EST terms from a pressure-based velocity potential simu-

lation was introduced with appropriate averaging in order to examine the behavior of terms

in the EST. The takeaways from this experiment are preliminary, but may be able to inform

the direct simulation of the energy density in 3-dimensional spaces in the future through

speci�cation of assumptions regarding the quantities of the wave-stress tensor. While the

current results are limited based on the geometry of the measured and simulated acous-

tic space, the computational strategy is equally valid for many other types of spaces, and

therefore presents a promising avenue for future research on the topic. As much more well-

known wave-based pressure simulation techniques and the corresponding standards for the

characterization of their boundary conditions in terms of real-world materials properties

and geometry continue to mature, this approach will also only improve in accuracy of its

representation of the stochastic sound�eld. This in turn would provide opportunities to ex-

plore the comportment of EST terms in 3-dimensional spaces, especially for large or open-air

spaces that remain computationally challenging and would bene�t from direct and e�cient

modeling of the EST.
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Chapter 7

Conclusions

This thesis has focused on the development of our understanding of the energy-stress tensor

from the perspective of theory, measurements, and computational approaches. Previously,

while the mathematics of the tensor were well understood due to its importance in other

physical disciplines, the practical application to acoustics remained limited due to the chal-

lenges of introducing additional constraints to the system consistent with physical observa-

tions of the time evolution of its terms, especially for 3-dimensional spaces. This speaks to

the challenging nature of comprehensive measurement of energy �elds as well as the de�-

nition and veri�cation of assumptions that simplify the complex relationships in the EST.

Furthermore, it highlights the innovation of solutions to 1- and 2-dimensional spaces based

on a momentum balance involving scattering at the domain boundaries, which built upon

the assumptions of the popular di�usion equation method, even if the exact relationship

between common materials property measures and boundary conditions remains di�cult to

evaluate.

In analyzing and extending the results from the 1-dimensional case, this thesis has pro-

posed an improved understanding of the solution space presented by the boundary param-

eters and its relationship to reverberation characteristics in real spaces on a frequency-by-

frequency basis. This demonstrated some of the requirements for particular spaces to be

representable with the approach, as well as clarifying the role of the parameters in terms

of the physical behavior of the system. With this knowledge, it began to become clear how

such an approach could be used to rapidly model the stochastic reverberation in a space

across a wide frequency range, provided that the proper coe�cients could be found from

measurements or other predictions. Furthermore, due to the size of the elements, even a

summation of multiple EST simulations with band-speci�c parameters may still be a more

e�cient way to represent stochastic reverberation than other wave-based or even geomet-

ric approaches to room acoustics, especially when considering the possibility of moving or

89
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directionally time-varying sources made possible by the inclusion of a source term.

This aspect was particularly relevant in ultimately auralizing the stochastic reverbera-

tion, which we hope will make the EST method more approachable to future researchers.

The straightforward application of time-frequency envelopes to noise sequences means that

aural evaluation of results is an e�ective way to evaluate simulation results for future mod-

els which may not be predicated on matching preestablished acoustical indices, but instead

directly predict boundary condition parameters based on room geometry and materials prop-

erties as the �nal arbiter of quality. The hybrid model also highlighted further questions

regarding the relationship between stochastic reverberation and other high-frequency acous-

tic phenomena that were not immediately apparent upon examination of solely energy-based

results. As demonstrated in the �nal chapter, some EST terms include wave packets arriving

around the same time as strong re
ections, perhaps indicating the energy they carry. While

we are con�dent in the model's capability of matching spatio-temporal decays on the scale of

an entire impulse response, verifying that the model properly represents the transformation

of these individual arrivals of characteristically non-di�use energy into a more general di�use

�eld would be an important �nding for the assembly of hybrid auralizations, regardless of

architecture.

Finally, we hope that the strategy presented in the last chapter, directly computing the

EST terms from a high-frequency wave-based model, may be useful in characterizing better

assumptions for the method in free space and in regions near boundaries. Continued interest

in these sound pressure models integrating improvements in boundary condition modeling,

viscothermal e�ects, and implementation on highly parallel hardware architectures mean

that the results from such analysis can only improve. Furthermore, this approach likely

surpasses the quality of measurement that would be possible with human-driven real-world

recordings, and the fact that a single simulation computes the �eld everywhere in the space

means that it may be competitive with serialized robotic collection of data in terms of raw

speed. We hope to have more de�nitive and expansive results regarding the evaluation of the

data in the studied space soon, and hope that the template allows for similar experiments

in other acoustical spaces of interest in the future.

7.1 Review

This thesis has covered four topics on the subject of the energy-stress tensor method: fre-

quency validity, a �nite volume formulation with sources, auralization of results within a

hybrid model, and computation of tensor quantities from pressure-based simulations. Taken

as a group, these advancements point toward the usefulness of the EST method for sim-

ulating the stochastic reverberation in a variety of spaces and under varying conditions.

Furthermore, the advantages in terms of speed and computational complexity, as well as
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possible synergies with existing methodologies for other portions of room acoustical simula-

tions, have been highlighted both in theory and in practice.

In terms of frequency validity, the model was demonstrated to function well above

Schroeder's frequency in a long hallway for two di�erent source types, monopole and dipole.

This served as a con�rmation of the region of applicability for the model as well as demon-

strating the approach for synthesis that would be undertaken later. Some of the main

�ndings in this section were the illustration of the e�ects and interpretation of interchange-

ability of the two simulation coe�cients, � and � , nominally characterizing the absorption

and scattering on surfaces in the room. Additionally, the di�erence between hallways that

were \su�ciently di�using" and not was examined, further substantiated the relationship of

the EST method to the presence of a di�use �eld.

The �nite volume formulation of the method was useful in two contexts: for the inclusion

of sources in the formalism as well as eventual comparison with acoustic pressure simulations

in the same schema. The similarities and di�erences between the update equations for the

two approaches were highlighted, demonstrating the overall e�ect of di�usion, which is to

oppose or slow the 
ow of di�use energy throughout a space. While a truly di�use �eld must

evenly �ll a volume, the evolution of an initial introduction of energy to a di�use state is a

more complicated process, relying on specular re
ections to distribute initial energy quickly

throughout a space and then facilitated by di�use re
ections in particular regions. Previously

derived dimensional reduction assumptions on the energy and momentum balances at the

boundaries allowed for the characterization of hallways, as before, to check the formulation,

but also allowed for additional 
exibility in problem domain de�nition.

Auralization is an important practical aspect of room acoustical modeling, essential for

evaluation of results as well as encouraging uptake in contexts that would bene�t from its

speed or physically-informed model of stochastic reverberation. While the role the EST

method plays in a hybrid auralization scheme was clear, di�culties in the temporal tran-

sition from early re
ections to the stochastic reverberation were highlighted, even as other

perceptual characteristics were adequately reproduced. An interface developed to compare

simulated and measured impulse responses and convolved source material proved to be a

powerful way to evaluate changes to the design of the hybrid method, giving instant feedback

on both successes and mistakes. Ultimately, the e�ort provided a framework for synthesis

of the di�use �eld from energy density envelopes and a guide for inclusion of the model in

future hybrid schemes.

Finally, an approach to quantifying the behavior of the EST terms from high-frequency

pressure simulations, facilitated by the development of the FVTD formulation in earlier

work, opens an avenue for future characterization of the o�-diagonal terms in free space. In

lieu of exhaustive physical measurements of a space, a strategy for empirically determining

the relationship between materials properties and EST method simulation coe�cients for a
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particular space was proposed, while also providing insight into how fully three-dimensional

modeling of the wave-stress tensor may proceed.

7.2 Future work

Parallel research into the suitability of coupling boundary problem and free �eld solutions

of the EST equations showed that such an approach was incorrect. A new approach based

on Riemannian tessellation may illustrate the path forward for directly simulating the EST

based on scattering that occurs as a result of boundary geometry instead of wavelength-

scale roughness. In this formalism, the uncertainty principle ties wavelength to the density

of di�racting locations in an image-source-like decomposition of room geometry, facilitating

a measure of the degree of di�usion as a function of frequency based purely on the shape of a

room. Future development of this idea including absorption at the boundaries is promising

in terms of characterizing anisotropic and frequency-dependent di�usion. Furthermore, it

will help clarify how to numerically approach the direct simulation of the EST in terms of

its conservation equations at the boundaries and in free space.

While a foothold has been gained in the pursuit of this thesis toward the application

of the EST method in large three-dimensional spaces, prediction of simulation parameters

a priori from domain geometry and materials properties requires further research. These

two subjects, that of room geometry and characterization of the e�ects of scattering on the

development of the stochastic reverberation, are both intimately tied to the degree of di�u-

sivity in a particular space, or put another way, the rate at which an acoustic �eld becomes

di�use. Better understanding of how these aspects interact, as well as how to evaluate exist-

ing spaces in terms of signal processing, may allow better characterization of di�using spaces

as well as enable more powerful application of the EST method in appropriate contexts.

7.3 Perspectives

While this thesis is coming to a close on the subject of the acoustic energy-stress tensor, it is

our hope that it will generate further interest on the topic given the promise of the approach

for modeling stochastic reverberation in an e�cient and physically relevant manner.



Part IV

Appendices

93



Appendix A

Publications

This appendix contains publications pertaining to the thesis. Please note that as a byproduct

of their inclusion in this document that all hyperlinks have been stripped. Please consider

acquiring an original version if this functionality is desired.
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Appendix B

Code listing

B.1 Introduction

This section serves as a reference for portions of code developed over the course of the thesis.

Most works can be found on Github under permissive licenses.

B.2 FVTD

https://github.com/1ceaham/AcousticFVTD_GeneralImpedance/

B.3 Remote code execution

https://github.com/1ceaham/sendToRemote
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